ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4698
- Accuracy: 0.8596
- Precision: 0.8512
- Recall: 0.8693
- F1: 0.8598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2369 | 1.0 | 714 | 0.5425 | 0.8219 | 0.8095 | 0.8580 | 0.8288 |
0.2306 | 2.0 | 1428 | 0.4387 | 0.8562 | 0.8510 | 0.8658 | 0.8576 |
0.1646 | 3.0 | 2142 | 0.4698 | 0.8596 | 0.8512 | 0.8693 | 0.8598 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Model tree for gyu8/ynat-model
Base model
monologg/koelectra-base-v3-discriminator