Visualize in Weights & Biases

mistral-7b-expo-7b-L2EXPO-25-7

This model is a fine-tuned version of hZzy/mistral-7b-sft-25-1 on the hZzy/direction_right2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4452
  • Objective: 0.4429
  • Reward Accuracy: 0.6574
  • Logp Accuracy: 0.6451
  • Log Diff Policy: 17.7719
  • Chosen Logps: -193.5036
  • Rejected Logps: -211.2754
  • Chosen Rewards: -0.9882
  • Rejected Rewards: -1.1621
  • Logits: -1.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 108
  • total_eval_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.6123 0.1517 100 0.5111 0.5082 0.5386 0.5193 0.4932 -92.5590 -93.0521 0.0212 0.0201 -2.1823
0.586 0.3033 200 0.4950 0.4930 0.5886 0.5540 2.7175 -94.1884 -96.9058 0.0049 -0.0184 -2.0328
0.5397 0.4550 300 0.4754 0.4737 0.6337 0.6169 10.7924 -129.7178 -140.5102 -0.3504 -0.4545 -1.8133
0.492 0.6067 400 0.4631 0.4616 0.6485 0.6401 13.2720 -123.6336 -136.9056 -0.2895 -0.4184 -2.1057
0.5057 0.7583 500 0.4569 0.4552 0.6569 0.6530 16.0166 -157.9163 -173.9330 -0.6323 -0.7887 -2.0772
0.4562 0.9100 600 0.4556 0.4556 0.6683 0.6639 17.9609 -185.6944 -203.6553 -0.9101 -1.0859 -2.0650
0.4627 1.0617 700 0.4463 0.4468 0.6683 0.6580 17.2045 -193.8147 -211.0192 -0.9913 -1.1595 -2.0785
0.4675 1.2133 800 0.4477 0.4481 0.6667 0.6586 18.6212 -171.0579 -189.6790 -0.7638 -0.9461 -2.0805
0.4631 1.3650 900 0.4523 0.4507 0.6697 0.6614 19.3812 -184.6346 -204.0157 -0.8995 -1.0895 -2.1364
0.4706 1.5167 1000 0.4428 0.4430 0.6636 0.6535 18.2421 -175.5473 -193.7894 -0.8087 -0.9872 -2.0802
0.4404 1.6684 1100 0.4509 0.4525 0.6644 0.6544 19.2144 -205.9645 -225.1790 -1.1128 -1.3011 -2.0013
0.4086 1.8200 1200 0.4418 0.4425 0.6742 0.6611 20.1585 -203.0412 -223.1997 -1.0836 -1.2814 -2.0214
0.4211 1.9717 1300 0.4377 0.4377 0.6636 0.6488 17.4303 -204.1001 -221.5304 -1.0942 -1.2647 -1.9872
0.3854 2.1234 1400 0.4415 0.4413 0.6616 0.6521 17.5702 -221.2297 -238.7999 -1.2655 -1.4374 -1.9931
0.4044 2.2750 1500 0.4484 0.4486 0.6644 0.6527 20.0957 -200.4279 -220.5237 -1.0575 -1.2546 -1.9230
0.4357 2.4267 1600 0.4485 0.4484 0.6703 0.6600 20.6916 -175.1429 -195.8344 -0.8046 -1.0077 -1.9267
0.4092 2.5784 1700 0.4627 0.4633 0.6641 0.6555 22.5421 -193.3455 -215.8876 -0.9866 -1.2082 -1.8966
0.4004 2.7300 1800 0.4512 0.4522 0.6625 0.6516 19.5557 -202.4462 -222.0019 -1.0776 -1.2694 -1.8232
0.3783 2.8817 1900 0.4530 0.4514 0.6630 0.6485 20.0630 -199.5361 -219.5991 -1.0485 -1.2453 -1.8925

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/mistral-7b-expo-7b-L2EXPO-25-7

Dataset used to train hZzy/mistral-7b-expo-7b-L2EXPO-25-7