Visualize in Weights & Biases

qwen2.5-0.5b-expo-IPO-25-1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-2 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:

  • Loss: 44.8744
  • Objective: 44.8557
  • Reward Accuracy: 0.5884
  • Logp Accuracy: 0.5632
  • Log Diff Policy: 6.6358
  • Chosen Logps: -132.9855
  • Rejected Logps: -139.6213
  • Chosen Rewards: -0.4551
  • Rejected Rewards: -0.5182
  • Logits: -2.2391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
48.4932 0.1577 50 48.8640 48.8817 0.5336 0.5246 1.4437 -99.4633 -100.9070 -0.1199 -0.1311 -1.3149
46.098 0.3154 100 47.4286 47.0768 0.5682 0.5610 3.6136 -120.9156 -124.5292 -0.3344 -0.3673 -1.5087
44.3116 0.4731 150 45.7856 45.6942 0.5850 0.5811 5.0661 -113.3503 -118.4164 -0.2587 -0.3062 -1.6136
43.3978 0.6307 200 45.5774 45.2083 0.5973 0.5777 6.3228 -133.1022 -139.4250 -0.4563 -0.5162 -1.9086
42.7061 0.7884 250 44.9593 44.7260 0.6046 0.5772 6.5003 -124.7787 -131.2790 -0.3730 -0.4348 -1.9727
41.9962 0.9461 300 44.5164 44.4618 0.5979 0.5794 6.9872 -129.9575 -136.9447 -0.4248 -0.4914 -2.0568
38.2458 1.1038 350 44.7698 44.6525 0.6007 0.5794 6.6454 -127.8146 -134.4600 -0.4034 -0.4666 -2.0736
36.6528 1.2615 400 45.2601 44.9216 0.6040 0.5772 6.9298 -135.8740 -142.8038 -0.4840 -0.5500 -2.1306
37.2127 1.4192 450 44.8450 44.9502 0.5962 0.5800 6.5044 -129.3140 -135.8184 -0.4184 -0.4802 -2.1449
36.5389 1.5769 500 44.9225 44.7990 0.5872 0.5632 6.8611 -139.9226 -146.7837 -0.5245 -0.5898 -2.2197
36.1702 1.7346 550 44.9264 44.6704 0.6035 0.5710 6.9227 -140.5884 -147.5112 -0.5311 -0.5971 -2.2685
36.3218 1.8922 600 44.6893 44.7346 0.5973 0.5671 6.5700 -129.7259 -136.2959 -0.4225 -0.4850 -2.2583

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-IPO-25-1

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(9)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-IPO-25-1