qwen2.5-0.5b-expo-L1EXPO-25-1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-1 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4894
- Objective: 0.4676
- Reward Accuracy: 0.6113
- Logp Accuracy: 0.6029
- Log Diff Policy: 40.0274
- Chosen Logps: -340.5497
- Rejected Logps: -380.5771
- Chosen Rewards: -0.2485
- Rejected Rewards: -0.2884
- Logits: -3.0576
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Objective | Reward Accuracy | Logp Accuracy | Log Diff Policy | Chosen Logps | Rejected Logps | Chosen Rewards | Rejected Rewards | Logits |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5053 | 0.1577 | 50 | 0.5071 | 0.4885 | 0.5341 | 0.5207 | 0.7811 | -92.9844 | -93.7655 | -0.0009 | -0.0016 | -1.3904 |
0.502 | 0.3154 | 100 | 0.5061 | 0.4875 | 0.5660 | 0.5308 | 1.8720 | -97.0731 | -98.9451 | -0.0050 | -0.0067 | -1.6907 |
0.5055 | 0.4731 | 150 | 0.5039 | 0.4851 | 0.5850 | 0.5515 | 4.6375 | -127.4373 | -132.0748 | -0.0354 | -0.0399 | -1.9857 |
0.493 | 0.6307 | 200 | 0.4997 | 0.4801 | 0.5845 | 0.5749 | 12.2021 | -205.9091 | -218.1112 | -0.1138 | -0.1259 | -2.3415 |
0.503 | 0.7884 | 250 | 0.4960 | 0.4758 | 0.5850 | 0.5710 | 18.8664 | -231.5545 | -250.4210 | -0.1395 | -0.1582 | -2.6015 |
0.4819 | 0.9461 | 300 | 0.4926 | 0.4721 | 0.6018 | 0.5889 | 28.5350 | -287.0227 | -315.5577 | -0.1950 | -0.2233 | -2.8512 |
0.4996 | 1.1038 | 350 | 0.4917 | 0.4701 | 0.6018 | 0.5861 | 34.2180 | -325.4102 | -359.6282 | -0.2334 | -0.2674 | -2.9696 |
0.4858 | 1.2615 | 400 | 0.4903 | 0.4684 | 0.6023 | 0.5962 | 36.4981 | -309.6466 | -346.1447 | -0.2176 | -0.2539 | -2.9164 |
0.4633 | 1.4192 | 450 | 0.4898 | 0.4680 | 0.6057 | 0.5962 | 38.4418 | -334.3559 | -372.7977 | -0.2423 | -0.2806 | -3.0070 |
0.4827 | 1.5769 | 500 | 0.4898 | 0.4682 | 0.6085 | 0.5951 | 38.9854 | -337.3905 | -376.3759 | -0.2453 | -0.2842 | -3.0316 |
0.4618 | 1.7346 | 550 | 0.4895 | 0.4677 | 0.6107 | 0.6029 | 39.8381 | -339.5474 | -379.3856 | -0.2475 | -0.2872 | -3.0556 |
0.473 | 1.8922 | 600 | 0.4894 | 0.4676 | 0.6119 | 0.6018 | 40.0601 | -340.9121 | -380.9722 | -0.2489 | -0.2888 | -3.0572 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.