Visualize in Weights & Biases

qwen2.5-0.5b-expo-L1EXPO-25-1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-1 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4894
  • Objective: 0.4676
  • Reward Accuracy: 0.6113
  • Logp Accuracy: 0.6029
  • Log Diff Policy: 40.0274
  • Chosen Logps: -340.5497
  • Rejected Logps: -380.5771
  • Chosen Rewards: -0.2485
  • Rejected Rewards: -0.2884
  • Logits: -3.0576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.5053 0.1577 50 0.5071 0.4885 0.5341 0.5207 0.7811 -92.9844 -93.7655 -0.0009 -0.0016 -1.3904
0.502 0.3154 100 0.5061 0.4875 0.5660 0.5308 1.8720 -97.0731 -98.9451 -0.0050 -0.0067 -1.6907
0.5055 0.4731 150 0.5039 0.4851 0.5850 0.5515 4.6375 -127.4373 -132.0748 -0.0354 -0.0399 -1.9857
0.493 0.6307 200 0.4997 0.4801 0.5845 0.5749 12.2021 -205.9091 -218.1112 -0.1138 -0.1259 -2.3415
0.503 0.7884 250 0.4960 0.4758 0.5850 0.5710 18.8664 -231.5545 -250.4210 -0.1395 -0.1582 -2.6015
0.4819 0.9461 300 0.4926 0.4721 0.6018 0.5889 28.5350 -287.0227 -315.5577 -0.1950 -0.2233 -2.8512
0.4996 1.1038 350 0.4917 0.4701 0.6018 0.5861 34.2180 -325.4102 -359.6282 -0.2334 -0.2674 -2.9696
0.4858 1.2615 400 0.4903 0.4684 0.6023 0.5962 36.4981 -309.6466 -346.1447 -0.2176 -0.2539 -2.9164
0.4633 1.4192 450 0.4898 0.4680 0.6057 0.5962 38.4418 -334.3559 -372.7977 -0.2423 -0.2806 -3.0070
0.4827 1.5769 500 0.4898 0.4682 0.6085 0.5951 38.9854 -337.3905 -376.3759 -0.2453 -0.2842 -3.0316
0.4618 1.7346 550 0.4895 0.4677 0.6107 0.6029 39.8381 -339.5474 -379.3856 -0.2475 -0.2872 -3.0556
0.473 1.8922 600 0.4894 0.4676 0.6119 0.6018 40.0601 -340.9121 -380.9722 -0.2489 -0.2888 -3.0572

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-L1EXPO-25-1

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(7)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L1EXPO-25-1