Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-25-2

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4846
  • Objective: 0.4700
  • Reward Accuracy: 0.6219
  • Logp Accuracy: 0.6230
  • Log Diff Policy: 55.1050
  • Chosen Logps: -364.5329
  • Rejected Logps: -419.6379
  • Chosen Rewards: -0.2771
  • Rejected Rewards: -0.3318
  • Logits: -4.6179

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.5039 0.1577 50 0.5116 0.5048 0.5470 0.5218 1.0926 -92.9307 -94.0233 -0.0055 -0.0062 -1.2157
0.5118 0.3154 100 0.5106 0.5038 0.5772 0.5386 2.1626 -94.4899 -96.6525 -0.0070 -0.0089 -1.3464
0.5278 0.4731 150 0.5086 0.5014 0.5738 0.5576 5.1593 -135.0134 -140.1726 -0.0475 -0.0524 -1.7394
0.4845 0.6307 200 0.5046 0.4964 0.5755 0.5772 12.1099 -208.8495 -220.9594 -0.1214 -0.1332 -2.1451
0.4953 0.7884 250 0.5007 0.4912 0.5934 0.5923 19.7754 -249.4757 -269.2511 -0.1620 -0.1815 -2.6017
0.4661 0.9461 300 0.4969 0.4857 0.6012 0.5968 27.9289 -288.4738 -316.4027 -0.2010 -0.2286 -2.9416
0.4725 1.1038 350 0.4936 0.4822 0.6124 0.6023 33.0923 -295.9875 -329.0798 -0.2085 -0.2413 -3.2578
0.4881 1.2615 400 0.4913 0.4795 0.6102 0.6113 37.9280 -299.2147 -337.1428 -0.2117 -0.2493 -3.5394
0.4575 1.4192 450 0.4891 0.4761 0.6214 0.6119 42.1253 -322.7853 -364.9105 -0.2353 -0.2771 -3.9786
0.4817 1.5769 500 0.4882 0.4743 0.6214 0.6174 47.9842 -360.6322 -408.6165 -0.2732 -0.3208 -4.2328
0.4459 1.7346 550 0.4858 0.4719 0.6180 0.6158 51.5714 -355.0592 -406.6306 -0.2676 -0.3188 -4.4310
0.4515 1.8922 600 0.4846 0.4700 0.6219 0.6230 55.1050 -364.5329 -419.6379 -0.2771 -0.3318 -4.6179

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
494M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-25-2

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(9)
this model