Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-25-3

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-2 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4834
  • Objective: 0.4703
  • Reward Accuracy: 0.6253
  • Logp Accuracy: 0.6208
  • Log Diff Policy: 104.4308
  • Chosen Logps: -755.0930
  • Rejected Logps: -859.5239
  • Chosen Rewards: -0.6676
  • Rejected Rewards: -0.7717
  • Logits: -7.5473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.5021 0.1577 50 0.5103 0.5036 0.5436 0.5414 2.5654 -115.5719 -118.1373 -0.0281 -0.0303 -1.5308
0.5018 0.3154 100 0.5003 0.4908 0.5872 0.5845 21.3523 -263.8485 -285.2008 -0.1764 -0.1974 -3.0190
0.504 0.4731 150 0.4872 0.4773 0.6063 0.6001 44.6167 -383.3965 -428.0132 -0.2959 -0.3402 -4.3297
0.4543 0.6307 200 0.4813 0.4703 0.6180 0.6202 61.6627 -484.1489 -545.8116 -0.3967 -0.4580 -5.3493
0.4567 0.7884 250 0.4788 0.4692 0.6247 0.6247 71.4366 -527.9006 -599.3371 -0.4404 -0.5115 -6.1216
0.4225 0.9461 300 0.4779 0.4668 0.6208 0.6163 87.7644 -624.8009 -712.5652 -0.5373 -0.6248 -6.6622
0.4 1.1038 350 0.4803 0.4703 0.6169 0.6119 88.7974 -605.5159 -694.3134 -0.5180 -0.6065 -6.4728
0.3985 1.2615 400 0.4814 0.4707 0.6197 0.6163 94.6204 -706.7501 -801.3705 -0.6193 -0.7136 -7.3144
0.3723 1.4192 450 0.4802 0.4719 0.6163 0.6147 94.9399 -637.5876 -732.5275 -0.5501 -0.6447 -6.9109
0.381 1.5769 500 0.4905 0.4779 0.6107 0.6113 105.0160 -843.2735 -948.2895 -0.7558 -0.8605 -7.7570
0.3538 1.7346 550 0.4837 0.4721 0.6130 0.6130 95.3465 -707.1511 -802.4977 -0.6197 -0.7147 -7.6110
0.347 1.8922 600 0.4822 0.4705 0.6180 0.6158 98.6297 -755.7971 -854.4269 -0.6683 -0.7666 -7.5941

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-25-3

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(9)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L2EXPO-25-3