Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-25-4

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-2 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4787
  • Objective: 0.4685
  • Reward Accuracy: 0.6174
  • Logp Accuracy: 0.6186
  • Log Diff Policy: 86.7020
  • Chosen Logps: -546.2890
  • Rejected Logps: -632.9909
  • Chosen Rewards: -0.4588
  • Rejected Rewards: -0.5452
  • Logits: -5.2345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.5032 0.1577 50 0.5111 0.5045 0.5475 0.5291 1.4376 -98.0006 -99.4382 -0.0105 -0.0116 -1.3005
0.5088 0.3154 100 0.5084 0.5013 0.5671 0.5570 5.7542 -157.0740 -162.8282 -0.0696 -0.0750 -1.6634
0.5169 0.4731 150 0.5000 0.4915 0.5895 0.5794 18.4406 -238.2272 -256.6678 -0.1508 -0.1689 -2.4207
0.4721 0.6307 200 0.4920 0.4808 0.5984 0.5984 35.5526 -324.8310 -360.3837 -0.2374 -0.2726 -3.1314
0.4783 0.7884 250 0.4854 0.4740 0.6079 0.6091 48.2612 -382.3873 -430.6486 -0.2949 -0.3428 -3.6091
0.4459 0.9461 300 0.4825 0.4709 0.6208 0.6141 56.4166 -438.2454 -494.6620 -0.3508 -0.4069 -4.3226
0.4457 1.1038 350 0.4803 0.4696 0.6247 0.6219 65.3183 -452.0122 -517.3304 -0.3645 -0.4295 -4.4589
0.4549 1.2615 400 0.4795 0.4683 0.6253 0.6202 71.3522 -470.1124 -541.4646 -0.3826 -0.4537 -4.7243
0.4227 1.4192 450 0.4778 0.4663 0.6270 0.6258 72.8114 -452.3585 -525.1699 -0.3649 -0.4374 -4.7772
0.4436 1.5769 500 0.4794 0.4674 0.6219 0.6158 79.5543 -541.1447 -620.6989 -0.4537 -0.5329 -5.1940
0.4133 1.7346 550 0.4770 0.4654 0.6214 0.6202 79.3433 -482.3657 -561.7089 -0.3949 -0.4739 -5.1004
0.414 1.8922 600 0.4772 0.4664 0.6292 0.6264 82.1284 -524.0090 -606.1374 -0.4365 -0.5183 -5.3084

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
35
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-25-4

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(9)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L2EXPO-25-4