qwen2.5-0.5b-expo-L2EXPO-25-4
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-2 on the hZzy/train_pairwise_all_new4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4787
- Objective: 0.4685
- Reward Accuracy: 0.6174
- Logp Accuracy: 0.6186
- Log Diff Policy: 86.7020
- Chosen Logps: -546.2890
- Rejected Logps: -632.9909
- Chosen Rewards: -0.4588
- Rejected Rewards: -0.5452
- Logits: -5.2345
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Objective | Reward Accuracy | Logp Accuracy | Log Diff Policy | Chosen Logps | Rejected Logps | Chosen Rewards | Rejected Rewards | Logits |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5032 | 0.1577 | 50 | 0.5111 | 0.5045 | 0.5475 | 0.5291 | 1.4376 | -98.0006 | -99.4382 | -0.0105 | -0.0116 | -1.3005 |
0.5088 | 0.3154 | 100 | 0.5084 | 0.5013 | 0.5671 | 0.5570 | 5.7542 | -157.0740 | -162.8282 | -0.0696 | -0.0750 | -1.6634 |
0.5169 | 0.4731 | 150 | 0.5000 | 0.4915 | 0.5895 | 0.5794 | 18.4406 | -238.2272 | -256.6678 | -0.1508 | -0.1689 | -2.4207 |
0.4721 | 0.6307 | 200 | 0.4920 | 0.4808 | 0.5984 | 0.5984 | 35.5526 | -324.8310 | -360.3837 | -0.2374 | -0.2726 | -3.1314 |
0.4783 | 0.7884 | 250 | 0.4854 | 0.4740 | 0.6079 | 0.6091 | 48.2612 | -382.3873 | -430.6486 | -0.2949 | -0.3428 | -3.6091 |
0.4459 | 0.9461 | 300 | 0.4825 | 0.4709 | 0.6208 | 0.6141 | 56.4166 | -438.2454 | -494.6620 | -0.3508 | -0.4069 | -4.3226 |
0.4457 | 1.1038 | 350 | 0.4803 | 0.4696 | 0.6247 | 0.6219 | 65.3183 | -452.0122 | -517.3304 | -0.3645 | -0.4295 | -4.4589 |
0.4549 | 1.2615 | 400 | 0.4795 | 0.4683 | 0.6253 | 0.6202 | 71.3522 | -470.1124 | -541.4646 | -0.3826 | -0.4537 | -4.7243 |
0.4227 | 1.4192 | 450 | 0.4778 | 0.4663 | 0.6270 | 0.6258 | 72.8114 | -452.3585 | -525.1699 | -0.3649 | -0.4374 | -4.7772 |
0.4436 | 1.5769 | 500 | 0.4794 | 0.4674 | 0.6219 | 0.6158 | 79.5543 | -541.1447 | -620.6989 | -0.4537 | -0.5329 | -5.1940 |
0.4133 | 1.7346 | 550 | 0.4770 | 0.4654 | 0.6214 | 0.6202 | 79.3433 | -482.3657 | -561.7089 | -0.3949 | -0.4739 | -5.1004 |
0.414 | 1.8922 | 600 | 0.4772 | 0.4664 | 0.6292 | 0.6264 | 82.1284 | -524.0090 | -606.1374 | -0.4365 | -0.5183 | -5.3084 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 35
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.