File size: 41,725 Bytes
acb7e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
"""Functions for working with Protein Structure Graphs."""
# %%
# Graphein
# Author: Arian Jamasb <[email protected]>, Eric Ma, Charlie Harris
# License: MIT
# Project Website: https://github.com/a-r-j/graphein
# Code Repository: https://github.com/a-r-j/graphein
from __future__ import annotations

import logging
import traceback
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import networkx as nx
import numpy as np
import pandas as pd
# from Bio.PDB.Polypeptide import three_to_one
from biopandas.pdb import PandasPdb
from biopandas.mmcif import PandasMmcif
from rich.progress import Progress
from tqdm.contrib.concurrent import process_map

from graphein.protein.config import (
    DSSPConfig,
    GetContactsConfig,
    ProteinGraphConfig,
)
from graphein.protein.edges.distance import (
    add_distance_to_edges,
    compute_distmat,
)
from graphein.protein.resi_atoms import BACKBONE_ATOMS, RESI_THREE_TO_1
from graphein.protein.subgraphs import extract_subgraph_from_chains
from graphein.protein.utils import (
    ProteinGraphConfigurationError,
    compute_rgroup_dataframe,
    filter_dataframe,
    get_protein_name_from_filename,
    three_to_one_with_mods,
)
from graphein.rna.constants import RNA_ATOMS
from graphein.utils.utils import (
    annotate_edge_metadata,
    annotate_graph_metadata,
    annotate_node_metadata,
    compute_edges,
)

from .utils_convert import biopandas_mmcif2pdb

# logging.basicConfig(level="DEBUG")
log = logging.getLogger(__name__)



def subset_structure_to_rna(
    df: pd.DataFrame,
) -> pd.DataFrame:
    """
    Return a subset of atomic dataframe that contains only certain atom names relevant for RNA structures.

    :param df: Protein Structure dataframe to subset
    :type df: pd.DataFrame
    :returns: Subsetted protein structure dataframe
    :rtype: pd.DataFrame
    """
    return filter_dataframe(
        df, by_column="atom_name", list_of_values=RNA_ATOMS, boolean=True
    )


def read_pdb_to_dataframe(
    pdb_path: Optional[str] = None,
    pdb_code: Optional[str] = None,
    uniprot_id: Optional[str] = None,
    model_index: int = 1,
) -> pd.DataFrame:
    """
    Reads PDB file to ``PandasPDB`` object.

    Returns ``atomic_df``, which is a dataframe enumerating all atoms and their cartesian coordinates in 3D space. Also
    contains associated metadata from the PDB file.

    :param pdb_path: path to PDB file. Defaults to ``None``.
    :type pdb_path: str, optional
    :param pdb_code: 4-character PDB accession. Defaults to ``None``.
    :type pdb_code: str, optional
    :param uniprot_id: UniProt ID to build graph from AlphaFoldDB. Defaults to ``None``.
    :type uniprot_id: str, optional
    :param model_index: Index of model to read. Only relevant for structures containing ensembles. Defaults to ``1``.
    :type model_index: int, optional
    :param verbose: print dataframe?
    :type verbose: bool
    :param granularity: Specifies granularity of dataframe. See :class:`~graphein.protein.config.ProteinGraphConfig` for further
        details.
    :type granularity: str
    :returns: ``pd.DataFrame`` containing protein structure
    :rtype: pd.DataFrame
    """
    if pdb_code is None and pdb_path is None and uniprot_id is None:
        raise NameError(
            "One of pdb_code, pdb_path or uniprot_id must be specified!"
        )

    if pdb_path is not None:
        if pdb_path.endswith('cif'):
            atomic_df = PandasMmcif().read_mmcif(pdb_path)
            atomic_df = biopandas_mmcif2pdb(atomic_df, model_index)
        else:
            atomic_df = PandasPdb().read_pdb(pdb_path)
    else:
        if uniprot_id is not None:
            atomic_df = PandasPdb().fetch_pdb(
                uniprot_id=uniprot_id, source="alphafold2-v2"
            )
        else:
            atomic_df = PandasPdb().fetch_pdb(pdb_code)

        atomic_df = atomic_df.get_model(model_index)
        if len(atomic_df.df["ATOM"]) == 0:
            raise ValueError(f"No model found for index: {model_index}")

    return pd.concat([atomic_df.df["ATOM"], atomic_df.df["HETATM"]])


def label_node_id(df: pd.DataFrame, granularity: str) -> pd.DataFrame:
    df["node_id"] = (
        df["chain_id"].apply(str)
        + ":"
        + df["residue_name"]
        + ":"
        + df["residue_number"].apply(str)
    )
    df["residue_id"] = df["node_id"]
    if granularity == "atom":
        df["node_id"] = df["node_id"] + ":" + df["atom_name"]
    elif granularity in {"rna_atom", "rna_centroid"}:
        df["node_id"] = (
            df["node_id"]
            + ":"
            + df["atom_number"].apply(str)
            + ":"
            + df["atom_name"]
        )
    return df


def deprotonate_structure(df: pd.DataFrame) -> pd.DataFrame:
    """Remove protons from PDB dataframe.

    :param df: Atomic dataframe.
    :type df: pd.DataFrame
    :returns: Atomic dataframe with all ``atom_name == "H"`` removed.
    :rtype: pd.DataFrame
    """
    log.debug(
        "Deprotonating protein. This removes H atoms from the pdb_df dataframe"
    )
    return filter_dataframe(
        df, by_column="element_symbol", list_of_values=["H"], boolean=False
    )


def convert_structure_to_centroids(df: pd.DataFrame) -> pd.DataFrame:
    """Overwrite existing ``(x, y, z)`` coordinates with centroids of the amino acids.

    :param df: Pandas Dataframe protein structure to convert into a dataframe of centroid positions.
    :type df: pd.DataFrame
    :return: pd.DataFrame with atoms/residues positions converted into centroid positions.
    :rtype: pd.DataFrame
    """
    log.debug(
        "Converting dataframe to centroids. This averages XYZ coords of the atoms in a residue"
    )

    centroids = calculate_centroid_positions(df)
    df = df.loc[df["atom_name"] == "CA"].reset_index(drop=True)
    df["x_coord"] = centroids["x_coord"]
    df["y_coord"] = centroids["y_coord"]
    df["z_coord"] = centroids["z_coord"]

    return df


def subset_structure_to_atom_type(
    df: pd.DataFrame, granularity: str
) -> pd.DataFrame:
    """
    Return a subset of atomic dataframe that contains only certain atom names.

    :param df: Protein Structure dataframe to subset.
    :type df: pd.DataFrame
    :returns: Subsetted protein structure dataframe.
    :rtype: pd.DataFrame
    """
    return filter_dataframe(
        df, by_column="atom_name", list_of_values=[granularity], boolean=True
    )


def remove_insertions(df: pd.DataFrame, keep: str = "first") -> pd.DataFrame:
    """
    This function removes insertions from PDB dataframes.

    :param df: Protein Structure dataframe to remove insertions from.
    :type df: pd.DataFrame
    :param keep: Specifies which insertion to keep. Options are ``"first"`` or ``"last"``.
        Default is ``"first"``
    :type keep: str
    :return: Protein structure dataframe with insertions removed
    :rtype: pd.DataFrame
    """
    # Catches unnamed insertions
    duplicates = df.duplicated(
        subset=["chain_id", "residue_number", "atom_name"], keep=keep
    )
    df = df[~duplicates]

    # Catches explicit insertions
    df = filter_dataframe(
        df, by_column="insertion", list_of_values=[""], boolean=True
    )

    # Remove alt_locs
    df = filter_dataframe(
        df, by_column="alt_loc", list_of_values=["", "A"], boolean=True
    )

    return df


def filter_hetatms(
    df: pd.DataFrame, keep_hets: List[str]
) -> List[pd.DataFrame]:
    """Return hetatms of interest.

    :param df: Protein Structure dataframe to filter hetatoms from.
    :type df: pd.DataFrame
    :param keep_hets: List of hetero atom names to keep.
    :returns: Protein structure dataframe with heteroatoms removed
    :rtype: pd.DataFrame
    """
    return [df.loc[df["residue_name"] == hetatm] for hetatm in keep_hets]


def process_dataframe(
    protein_df: pd.DataFrame,
    atom_df_processing_funcs: Optional[List[Callable]] = None,
    hetatom_df_processing_funcs: Optional[List[Callable]] = None,
    granularity: str = "centroids",
    chain_selection: str = "all",
    insertions: bool = False,
    deprotonate: bool = True,
    keep_hets: List[str] = [],
    verbose: bool = False,
) -> pd.DataFrame:
    """
    Process ATOM and HETATM dataframes to produce singular dataframe used for graph construction.

    :param protein_df: Dataframe to process.
        Should be the object returned from :func:`~graphein.protein.graphs.read_pdb_to_dataframe`.
    :type protein_df: pd.DataFrame
    :param atom_df_processing_funcs: List of functions to process dataframe. These must take in a dataframe and return a
        dataframe. Defaults to None.
    :type atom_df_processing_funcs: List[Callable], optional
    :param hetatom_df_processing_funcs: List of functions to process the hetatom dataframe. These must take in a dataframe and return a dataframe
    :type hetatom_df_processing_funcs: List[Callable], optional
    :param granularity: The level of granularity for the graph. This determines the node definition.
        Acceptable values include: ``"centroids"``, ``"atoms"``,
        any of the atom_names in the PDB file (e.g. ``"CA"``, ``"CB"``, ``"OG"``, etc.).
        See: :const:`~graphein.protein.config.GRAPH_ATOMS` and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
    :type granularity: str
    :param insertions: Whether or not to keep insertions.
    :param insertions: bool
    :param deprotonate: Whether or not to remove hydrogen atoms (i.e. deprotonation).
    :type deprotonate: bool
    :param keep_hets: Hetatoms to keep. Defaults to an empty list.
        To keep a hetatom, pass it inside a list of hetatom names to keep.
    :type keep_hets: List[str]
    :param verbose: Verbosity level.
    :type verbose: bool
    :param chain_selection: Which protein chain to select. Defaults to ``"all"``. Eg can use ``"ACF"``
        to select 3 chains (``A``, ``C`` & ``F``)
    :type chain_selection: str
    :return: A protein dataframe that can be consumed by
        other graph construction functions.
    :rtype: pd.DataFrame
    """
    protein_df = label_node_id(protein_df, granularity=granularity)
    # TODO: Need to properly define what "granularity" is supposed to do.
    atoms = filter_dataframe(
        protein_df,
        by_column="record_name",
        list_of_values=["ATOM"],
        boolean=True,
    )
    hetatms = filter_dataframe(
        protein_df,
        by_column="record_name",
        list_of_values=["HETATM"],
        boolean=True,
    )

    # This block enables processing via a list of supplied functions operating on the atom and hetatom dataframes
    # If these are provided, the dataframe returned will be computed only from these and the default workflow
    # below this block will not execute.
    if atom_df_processing_funcs is not None:
        for func in atom_df_processing_funcs:
            atoms = func(atoms)
        if hetatom_df_processing_funcs is None:
            return atoms

    if hetatom_df_processing_funcs is not None:
        for func in hetatom_df_processing_funcs:
            hetatms = func(hetatms)
        return pd.concat([atoms, hetatms])

    if keep_hets:
        hetatms_to_keep = filter_hetatms(hetatms, keep_hets)
        atoms = pd.concat([atoms] + hetatms_to_keep)

    # Deprotonate structure by removing H atoms
    if deprotonate:
        atoms = deprotonate_structure(atoms)

    # Restrict DF to desired granularity
    if granularity == "atom":
        pass
    elif granularity in {"centroids", "rna_centroid"}:
        atoms = convert_structure_to_centroids(atoms)
    elif granularity == "rna_atom":
        atoms = subset_structure_to_rna(atoms)
    else:
        atoms = subset_structure_to_atom_type(atoms, granularity)

    protein_df = atoms

    # Remove alt_loc residues
    if not insertions:
        protein_df = remove_insertions(protein_df)

    # perform chain selection
    protein_df = select_chains(
        protein_df, chain_selection=chain_selection, verbose=verbose
    )

    log.debug(f"Detected {len(protein_df)} total nodes")

    # Sort dataframe to place HETATMs
    protein_df = sort_dataframe(protein_df)

    return protein_df


def sort_dataframe(df: pd.DataFrame) -> pd.DataFrame:
    """Sorts a protein dataframe by chain->residue number->atom number

    This is useful for distributing hetatms/modified residues through the DF.

    :param df: Protein dataframe to sort.
    :type df: pd.DataFrame
    :return: Sorted protein dataframe.
    :rtype: pd.DataFrame
    """
    return df.sort_values(by=["chain_id", "residue_number", "atom_number"])


def assign_node_id_to_dataframe(
    protein_df: pd.DataFrame, granularity: str
) -> pd.DataFrame:
    """
    Assigns the node ID back to the ``pdb_df`` dataframe

    :param protein_df: Structure Dataframe
    :type protein_df: pd.DataFrame
    :param granularity: Granularity of graph. Atom-level,
        residue (e.g. ``CA``) or ``centroids``.
        See: :const:`~graphein.protein.config.GRAPH_ATOMS`
        and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
    :type granularity: str
    :return: Returns dataframe with added ``node_ids``
    :rtype: pd.DataFrame
    """
    protein_df["node_id"] = (
        protein_df["chain_id"].apply(str)
        + ":"
        + protein_df["residue_name"]
        + ":"
        + protein_df["residue_number"].apply(str)
    )
    if granularity in {"atom", "rna_atom"}:
        protein_df[
            "node_id"
        ] = f'{protein_df["node_id"]}:{protein_df["atom_name"]}'


def select_chains(
    protein_df: pd.DataFrame, chain_selection: str, verbose: bool = False
) -> pd.DataFrame:
    """
    Extracts relevant chains from ``protein_df``.

    :param protein_df: pandas dataframe of PDB subsetted to relevant atoms
        (``CA``, ``CB``).
    :type protein_df: pd.DataFrame
    :param chain_selection: Specifies chains that should be extracted from
        the larger complexed structure.
    :type chain_selection: str
    :param verbose: Print dataframe?
    :type verbose: bool
    :return: Protein structure dataframe containing only entries in the
        chain selection.
    :rtype: pd.DataFrame
    """
    if chain_selection != "all":
        protein_df = filter_dataframe(
            protein_df,
            by_column="chain_id",
            list_of_values=list(chain_selection),
            boolean=True,
        )

    return protein_df


def initialise_graph_with_metadata(
    protein_df: pd.DataFrame,
    raw_pdb_df: pd.DataFrame,
    granularity: str,
    name: Optional[str] = None,
    pdb_code: Optional[str] = None,
    pdb_path: Optional[str] = None,
) -> nx.Graph:
    """
    Initializes the nx Graph object with initial metadata.

    :param protein_df: Processed Dataframe of protein structure.
    :type protein_df: pd.DataFrame
    :param raw_pdb_df: Unprocessed dataframe of protein structure for comparison and traceability downstream.
    :type raw_pdb_df: pd.DataFrame
    :param granularity: Granularity of the graph (eg ``"atom"``, ``"CA"``, ``"CB"`` etc or ``"centroid"``).
        See: :const:`~graphein.protein.config.GRAPH_ATOMS` and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
    :type granularity: str
    :param name: specified given name for the graph. If None, the PDB code or the file name will be used to name the graph.
    :type name: Optional[str], defaults to ``None``
    :param pdb_code: PDB ID / Accession code, if the PDB is available on the PDB database.
    :type pdb_code: Optional[str], defaults to ``None``
    :param pdb_path: path to local PDB file, if constructing a graph from a local file.
    :type pdb_path: Optional[str], defaults to ``None``
    :return: Returns initial protein structure graph with metadata.
    :rtype: nx.Graph
    """

    # Get name for graph if no name was provided
    if name is None:
        if pdb_path is not None:
            name = get_protein_name_from_filename(pdb_path)
        else:
            name = pdb_code

    G = nx.Graph(
        name=name,
        pdb_code=pdb_code,
        pdb_path=pdb_path,
        chain_ids=list(protein_df["chain_id"].unique()),
        pdb_df=protein_df,
        raw_pdb_df=raw_pdb_df,
        rgroup_df=compute_rgroup_dataframe(remove_insertions(raw_pdb_df)),
        coords=np.asarray(protein_df[["x_coord", "y_coord", "z_coord"]]),
    )

    # Create graph and assign intrinsic graph-level metadata
    G.graph["node_type"] = granularity

    # Add Sequences to graph metadata
    for c in G.graph["chain_ids"]:
        if granularity == "rna_atom":
            sequence = protein_df.loc[protein_df["chain_id"] == c][
                "residue_name"
            ].str.cat()
        else:
            sequence = (
                protein_df.loc[protein_df["chain_id"] == c]["residue_name"]
                .apply(three_to_one_with_mods)
                .str.cat()
            )
        G.graph[f"sequence_{c}"] = sequence
    return G


def add_nodes_to_graph(
    G: nx.Graph,
    protein_df: Optional[pd.DataFrame] = None,
    verbose: bool = False,
) -> nx.Graph:
    """Add nodes into protein graph.

    :param G: ``nx.Graph`` with metadata to populate with nodes.
    :type G: nx.Graph
    :protein_df: DataFrame of protein structure containing nodes & initial node metadata to add to the graph.
    :type protein_df: pd.DataFrame, optional
    :param verbose: Controls verbosity of this step.
    :type verbose: bool
    :returns: nx.Graph with nodes added.
    :rtype: nx.Graph
    """

    # If no protein dataframe is supplied, use the one stored in the Graph object
    if protein_df is None:
        protein_df = G.graph["pdb_df"]
    # Assign intrinsic node attributes
    chain_id = protein_df["chain_id"].apply(str)
    residue_name = protein_df["residue_name"]
    residue_number = protein_df["residue_number"]  # .apply(str)
    coords = np.asarray(protein_df[["x_coord", "y_coord", "z_coord"]])
    b_factor = protein_df["b_factor"]
    atom_type = protein_df["atom_name"]
    nodes = protein_df["node_id"]
    element_symbol = protein_df["element_symbol"]
    G.add_nodes_from(nodes)

    # Set intrinsic node attributes
    nx.set_node_attributes(G, dict(zip(nodes, chain_id)), "chain_id")
    nx.set_node_attributes(G, dict(zip(nodes, residue_name)), "residue_name")
    nx.set_node_attributes(
        G, dict(zip(nodes, residue_number)), "residue_number"
    )
    nx.set_node_attributes(G, dict(zip(nodes, atom_type)), "atom_type")
    nx.set_node_attributes(
        G, dict(zip(nodes, element_symbol)), "element_symbol"
    )
    nx.set_node_attributes(G, dict(zip(nodes, coords)), "coords")
    nx.set_node_attributes(G, dict(zip(nodes, b_factor)), "b_factor")

    # TODO: include charge, line_idx for traceability?
    if verbose:
        print(nx.info(G))
        print(G.nodes())

    return G


def calculate_centroid_positions(
    atoms: pd.DataFrame, verbose: bool = False
) -> pd.DataFrame:
    """
    Calculates position of sidechain centroids.

    :param atoms: ATOM df of protein structure.
    :type atoms: pd.DataFrame
    :param verbose: bool controlling verbosity.
    :type verbose: bool
    :return: centroids (df).
    :rtype: pd.DataFrame
    """
    centroids = (
        atoms.groupby("residue_number")
        .mean()[["x_coord", "y_coord", "z_coord"]]
        .reset_index()
    )
    if verbose:
        print(f"Calculated {len(centroids)} centroid nodes")
    log.debug(f"Calculated {len(centroids)} centroid nodes")
    return centroids


def compute_edges(
    G: nx.Graph,
    funcs: List[Callable],
    get_contacts_config: Optional[GetContactsConfig] = None,
) -> nx.Graph:
    """
    Computes edges for the protein structure graph. Will compute a pairwise
    distance matrix between nodes which is
    added to the graph metadata to facilitate some edge computations.

    :param G: nx.Graph with nodes to add edges to.
    :type G: nx.Graph
    :param funcs: List of edge construction functions.
    :type funcs: List[Callable]
    :param get_contacts_config: Config object for ``GetContacts`` if
        intramolecular edges are being used.
    :type get_contacts_config: graphein.protein.config.GetContactsConfig
    :return: Graph with added edges.
    :rtype: nx.Graph
    """
    # This control flow prevents unnecessary computation of the distance matrices
    if "config" in G.graph:
        if G.graph["config"].granularity == "atom":
            G.graph["atomic_dist_mat"] = compute_distmat(G.graph["pdb_df"])
        else:
            G.graph["dist_mat"] = compute_distmat(G.graph["pdb_df"])

    for func in funcs:
        func(G)

    return add_distance_to_edges(G)


def construct_graph(
    config: Optional[ProteinGraphConfig] = None,
    name: Optional[str] = None,
    pdb_path: Optional[str] = None,
    uniprot_id: Optional[str] = None,
    pdb_code: Optional[str] = None,
    chain_selection: str = "all",
    model_index: int = 1,
    df_processing_funcs: Optional[List[Callable]] = None,
    edge_construction_funcs: Optional[List[Callable]] = None,
    edge_annotation_funcs: Optional[List[Callable]] = None,
    node_annotation_funcs: Optional[List[Callable]] = None,
    graph_annotation_funcs: Optional[List[Callable]] = None,
) -> nx.Graph:
    """
    Constructs protein structure graph from a ``pdb_code`` or ``pdb_path``.

    Users can provide a :class:`~graphein.protein.config.ProteinGraphConfig`
    object to specify construction parameters.

    However, config parameters can be overridden by passing arguments directly to the function.

    :param config: :class:`~graphein.protein.config.ProteinGraphConfig` object. If None, defaults to config in ``graphein.protein.config``.
    :type config: graphein.protein.config.ProteinGraphConfig, optional
    :param name: an optional given name for the graph. the PDB ID or PDB file name will be used if not specified.
    :type name: str, optional
    :param pdb_path: Path to ``pdb_file`` when constructing a graph from a local pdb file. Default is ``None``.
    :type pdb_path: Optional[str], defaults to ``None``
    :param pdb_code: A 4-character PDB ID / accession to be used to construct the graph, if available. Default is ``None``.
    :type pdb_code: Optional[str], defaults to ``None``
    :param uniprot_id: UniProt accession ID to build graph from AlphaFold2DB. Default is ``None``.
    :type uniprot_id: str, optional
    :param chain_selection: String of polypeptide chains to include in graph. E.g ``"ABDF"`` or ``"all"``. Default is ``"all"``.
    :type chain_selection: str
    :param model_index: Index of model to use in the case of structural ensembles. Default is ``1``.
    :type model_index: int
    :param df_processing_funcs: List of dataframe processing functions. Default is ``None``.
    :type df_processing_funcs: List[Callable], optional
    :param edge_construction_funcs: List of edge construction functions. Default is ``None``.
    :type edge_construction_funcs: List[Callable], optional
    :param edge_annotation_funcs: List of edge annotation functions. Default is ``None``.
    :type edge_annotation_funcs: List[Callable], optional
    :param node_annotation_funcs: List of node annotation functions. Default is ``None``.
    :type node_annotation_funcs: List[Callable], optional
    :param graph_annotation_funcs: List of graph annotation function. Default is ``None``.
    :type graph_annotation_funcs: List[Callable]
    :return: Protein Structure Graph
    :rtype: nx.Graph
    """

    if pdb_code is None and pdb_path is None and uniprot_id is None:
        raise ValueError(
            "Either a PDB ID, UniProt ID or a path to a local PDB file"
            " must be specified to construct a graph"
        )
   
    # If no config is provided, use default
    if config is None:
        config = ProteinGraphConfig()
    with Progress(transient=True) as progress:
        task1 = progress.add_task("Reading PDB file...", total=1)
        # Get name from pdb_file is no pdb_code is provided
        # if pdb_path and (pdb_code is None and uniprot_id is None):
        #    pdb_code = get_protein_name_from_filename(pdb_path)
        #    pdb_code = pdb_code if len(pdb_code) == 4 else None
        progress.advance(task1)

        # If config params are provided, overwrite them
        config.protein_df_processing_functions = (
            df_processing_funcs
            if config.protein_df_processing_functions is None
            else config.protein_df_processing_functions
        )
        config.edge_construction_functions = (
            edge_construction_funcs
            if config.edge_construction_functions is None
            else config.edge_construction_functions
        )
        config.node_metadata_functions = (
            node_annotation_funcs
            if config.node_metadata_functions is None
            else config.node_metadata_functions
        )
        config.graph_metadata_functions = (
            graph_annotation_funcs
            if config.graph_metadata_functions is None
            else config.graph_metadata_functions
        )
        config.edge_metadata_functions = (
            edge_annotation_funcs
            if config.edge_metadata_functions is None
            else config.edge_metadata_functions
        )

        raw_df = read_pdb_to_dataframe(
            pdb_path,
            pdb_code,
            uniprot_id,
            model_index=model_index,
        )
        
   
        task2 = progress.add_task("Processing PDB dataframe...", total=1)
        # raw_df = label_node_id(raw_df, granularity=config.granularity)
        # raw_df.df["ATOM"] = label_node_id(
        #    raw_df.df["ATOM"], granularity=config.granularity
        # )
        # raw_df.df["HETATM"] = label_node_id(
        #    raw_df.df["HETATM"], granularity=config.granularity
        # )
        raw_df = sort_dataframe(raw_df)
        protein_df = process_dataframe(
            raw_df,
            chain_selection=chain_selection,
            granularity=config.granularity,
            insertions=config.insertions,
            keep_hets=config.keep_hets,
        )
        progress.advance(task2)

        task3 = progress.add_task("Initializing graph...", total=1)
        # Initialise graph with metadata
        g = initialise_graph_with_metadata(
            protein_df=protein_df,
            raw_pdb_df=raw_df,
            name=name,
            pdb_code=pdb_code,
            pdb_path=pdb_path,
            granularity=config.granularity,
        )
        # Add nodes to graph
        g = add_nodes_to_graph(g)
        # Add config to graph
        g.graph["config"] = config
        g.graph["path"] = g.graph["pdb_path"]

        # Annotate additional node metadata
        if config.node_metadata_functions is not None:
            g = annotate_node_metadata(g, config.node_metadata_functions)
        progress.advance(task3)
        task4 = progress.add_task("Constructing edges...", total=1)
        # Compute graph edges
        g = compute_edges(
            g,
            funcs=config.edge_construction_functions,
            get_contacts_config=None,
        )
        progress.advance(task4)

    # Annotate additional graph metadata
    # print(g.graph['dssp_df'])
    if config.graph_metadata_functions is not None:
        g = annotate_graph_metadata(g, config.graph_metadata_functions)

    # Annotate additional edge metadata
    if config.edge_metadata_functions is not None:
        g = annotate_edge_metadata(g, config.edge_metadata_functions)

    return g


def _mp_graph_constructor(
    args: Tuple[str, str, int], source: str, config: ProteinGraphConfig
) -> Union[nx.Graph, None]:
    """
    Protein graph constructor for use in multiprocessing several protein structure graphs.

    :param args: Tuple of pdb code/path and the chain selection for that PDB.
    :type args: Tuple[str, str]
    :param use_pdb_code: Whether we are using ``"pdb_code"``s, ``pdb_path``s or ``"uniprot_id"``s.
    :type use_pdb_code: bool
    :param config: Protein structure graph construction config (see: :class:`graphein.protein.config.ProteinGraphConfig`).
    :type config: ProteinGraphConfig
    :return: Protein structure graph or ``None`` if an error is encountered.
    :rtype: Union[nx.Graph, None]
    """
    log.info(
        f"Constructing graph for: {args[0]}. Chain selection: {args[1]}. Model index: {args[2]}"
    )
    func = partial(construct_graph, config=config)
    try:
        if source == "pdb_code":
            return func(
                pdb_code=args[0], chain_selection=args[1], model_index=args[2]
            )
        elif source == "pdb_path":
            return func(
                pdb_path=args[0], chain_selection=args[1], model_index=args[2]
            )
        elif source == "uniprot_id":
            return func(
                uniprot_id=args[0],
                chain_selection=args[1],
                model_index=args[2],
            )

    except Exception as ex:
        log.info(
            f"Graph construction error (PDB={args[0]})! {traceback.format_exc()}"
        )
        log.info(ex)
        return None


def construct_graphs_mp(
    pdb_code_it: Optional[List[str]] = None,
    pdb_path_it: Optional[List[str]] = None,
    uniprot_id_it: Optional[List[str]] = None,
    chain_selections: Optional[List[str]] = None,
    model_indices: Optional[List[str]] = None,
    config: ProteinGraphConfig = ProteinGraphConfig(),
    num_cores: int = 16,
    return_dict: bool = True,
    out_path: Optional[str] = None,
) -> Union[List[nx.Graph], Dict[str, nx.Graph]]:
    """
    Constructs protein graphs for a list of pdb codes or pdb paths using multiprocessing.

    :param pdb_code_it: List of pdb codes to use for protein graph construction
    :type pdb_code_it: Optional[List[str]], defaults to ``None``
    :param pdb_path_it: List of paths to PDB files to use for protein graph construction
    :type pdb_path_it: Optional[List[str]], defaults to ``None``
    :param chain_selections: List of chains to select from the protein structures (e.g. ``["ABC", "A", "L", "CD"...]``)
    :type chain_selections: Optional[List[str]], defaults to ``None``
    :param model_indices: List of model indices to use for protein graph construction. Only relevant for structures containing ensembles of models.
    :type model_indices: Optional[List[str]], defaults to ``None``
    :param config: ProteinGraphConfig to use.
    :type config: graphein.protein.config.ProteinGraphConfig, defaults to default config params
    :param num_cores: Number of cores to use for multiprocessing. The more the merrier
    :type num_cores: int, defaults to ``16``
    :param return_dict: Whether or not to return a dictionary (indexed by pdb codes/paths) or a list of graphs.
    :type return_dict: bool, default to ``True``
    :param out_path: Path to save the graphs to. If None, graphs are not saved.
    :type out_path: Optional[str], defaults to ``None``
    :return: Iterable of protein graphs. None values indicate there was a problem in constructing the graph for this particular pdb
    :rtype: Union[List[nx.Graph], Dict[str, nx.Graph]]
    """
    assert (
        pdb_code_it is not None or pdb_path_it is not None
    ), "Iterable of pdb codes, pdb paths or uniprot IDs required."

    if pdb_code_it is not None:
        pdbs = pdb_code_it
        source = "pdb_code"

    if pdb_path_it is not None:
        pdbs = pdb_path_it
        source = "pdb_path"

    if uniprot_id_it is not None:
        pdbs = uniprot_id_it
        source = "uniprot_id"

    if chain_selections is None:
        chain_selections = ["all"] * len(pdbs)

    if model_indices is None:
        model_indices = [1] * len(pdbs)

    constructor = partial(_mp_graph_constructor, source=source, config=config)

    graphs = list(
        process_map(
            constructor,
            [
                (pdb, chain_selections[i], model_indices[i])
                for i, pdb in enumerate(pdbs)
            ],
            max_workers=num_cores,
        )
    )
    if out_path is not None:
        [
            nx.write_gpickle(
                g, str(f"{out_path}/" + f"{g.graph['name']}.pickle")
            )
            for g in graphs
        ]

    if return_dict:
        graphs = {pdb: graphs[i] for i, pdb in enumerate(pdbs)}

    return graphs


def compute_chain_graph(
    g: nx.Graph,
    chain_list: Optional[List[str]] = None,
    remove_self_loops: bool = False,
    return_weighted_graph: bool = False,
) -> Union[nx.Graph, nx.MultiGraph]:
    """Computes a chain-level graph from a protein structure graph.

    This graph features nodes as individual chains in a complex and edges as
    the interactions between constituent nodes in each chain. You have the
    option of returning an unweighted graph (multigraph,
    ``return_weighted_graph=False``) or a weighted graph
    (``return_weighted_graph=True``). The difference between these is the
    unweighted graph features and edge for each interaction between chains
    (ie the number of edges will be equal to the number of edges in the input
    protein structure graph), while the weighted graph sums these interactions
    to a single edge between chains with the counts stored as features.

    :param g: A protein structure graph to compute the chain graph of.
    :type g: nx.Graph
    :param chain_list: A list of chains to extract from the input graph.
        If ``None``, all chains will be used. This is provided as input to
        ``extract_subgraph_from_chains``. Default is ``None``.
    :type chain_list: Optional[List[str]]
    :param remove_self_loops: Whether to remove self-loops from the graph.
        Default is False.
    :type remove_self_loops: bool
    :return: A chain-level graph.
    :rtype: Union[nx.Graph, nx.MultiGraph]
    """
    # If we are extracting specific chains, do it here.
    if chain_list is not None:
        g = extract_subgraph_from_chains(g, chain_list)

    # Initialise new graph with Metadata
    h = nx.MultiGraph()
    h.graph = g.graph
    h.graph["node_type"] = "chain"

    # Set nodes
    nodes_per_chain = {chain: 0 for chain in g.graph["chain_ids"]}
    sequences = {chain: "" for chain in g.graph["chain_ids"]}
    for n, d in g.nodes(data=True):
        nodes_per_chain[d["chain_id"]] += 1
        sequences[d["chain_id"]] += RESI_THREE_TO_1[d["residue_name"]]

    h.add_nodes_from(g.graph["chain_ids"])

    for n, d in h.nodes(data=True):
        d["num_residues"] = nodes_per_chain[n]
        d["sequence"] = sequences[n]

    # Add edges
    for u, v, d in g.edges(data=True):
        h.add_edge(
            g.nodes[u]["chain_id"], g.nodes[v]["chain_id"], kind=d["kind"]
        )
    # Remove self-loops if necessary. Checks for equality between nodes in a given edge.
    if remove_self_loops:
        edges_to_remove: List[Tuple[str]] = [
            (u, v) for u, v in h.edges() if u == v
        ]
        h.remove_edges_from(edges_to_remove)

    # Compute a weighted graph if required.
    if return_weighted_graph:
        return compute_weighted_graph_from_multigraph(h)
    return h


def compute_weighted_graph_from_multigraph(g: nx.MultiGraph) -> nx.Graph:
    """Computes a weighted graph from a multigraph.

    This function is used to convert a multigraph to a weighted graph. The
    weights of the edges are the number of interactions between the nodes.

    :param g: A multigraph.
    :type g: nx.MultiGraph
    :return: A weighted graph.
    :rtype: nx.Graph
    """
    H = nx.Graph()
    H.graph = g.graph
    H.add_nodes_from(g.nodes(data=True))
    for u, v, d in g.edges(data=True):
        if H.has_edge(u, v):
            H[u][v]["weight"] += len(d["kind"])
            H[u][v]["kind"].update(d["kind"])
            for kind in list(d["kind"]):
                try:
                    H[u][v][kind] += 1
                except KeyError:
                    H[u][v][kind] = 1
        else:
            H.add_edge(u, v, weight=len(d["kind"]), kind=d["kind"])
            for kind in list(d["kind"]):
                H[u][v][kind] = 1
    return H


def number_groups_of_runs(list_of_values: List[Any]) -> List[str]:
    """Numbers groups of runs in a list of values.

    E.g. ``["A", "A", "B", "A", "A", "A", "B", "B"] ->
    ["A1", "A1", "B1", "A2", "A2", "A2", "B2", "B2"]``

    :param list_of_values: List of values to number.
    :type list_of_values: List[Any]
    :return: List of numbered values.
    :rtype: List[str]
    """
    df = pd.DataFrame({"val": list_of_values})
    df["idx"] = df["val"].shift() != df["val"]
    df["sum"] = df.groupby("val")["idx"].cumsum()
    return list(df["val"].astype(str) + df["sum"].astype(str))


def compute_secondary_structure_graph(
    g: nx.Graph,
    allowable_ss_elements: Optional[List[str]] = None,
    remove_non_ss: bool = True,
    remove_self_loops: bool = False,
    return_weighted_graph: bool = False,
) -> Union[nx.Graph, nx.MultiGraph]:
    """Computes a secondary structure graph from a protein structure graph.

    :param g: A protein structure graph to compute the secondary structure
        graph of.
    :type g: nx.Graph
    :param remove_non_ss: Whether to remove non-secondary structure nodes from
        the graph. These are denoted as ``"-"`` by DSSP. Default is True.
    :type remove_non_ss: bool
    :param remove_self_loops: Whether to remove self-loops from the graph.
        Default is ``False``.
    :type remove_self_loops: bool
    :param return_weighted_graph: Whether to return a weighted graph.
        Default is False.
    :type return_weighted_graph: bool
    :raises ProteinGraphConfigurationError: If the protein structure graph is
        not configured correctly with secondary structure assignments on all
        nodes.
    :return: A secondary structure graph.
    :rtype: Union[nx.Graph, nx.MultiGraph]
    """
    # Initialise list of secondary structure elements we use to build the graph
    ss_list: List[str] = []

    # Check nodes have secondary structure assignment & store them in list
    for _, d in g.nodes(data=True):
        if "ss" not in d.keys():
            raise ProteinGraphConfigurationError(
                "Secondary structure not defined for all nodes."
            )
        ss_list.append(d["ss"])

    # Number SS elements
    ss_list = pd.Series(number_groups_of_runs(ss_list))
    ss_list.index = list(g.nodes())

    # Remove unstructured elements if necessary
    if remove_non_ss:
        ss_list = ss_list[~ss_list.str.contains("-")]
    # Subset to only allowable SS elements if necessary
    if allowable_ss_elements:
        ss_list = ss_list[
            ss_list.str.contains("|".join(allowable_ss_elements))
        ]

    constituent_residues: Dict[str, List[str]] = ss_list.index.groupby(
        ss_list.values
    )
    constituent_residues = {
        k: list(v) for k, v in constituent_residues.items()
    }
    residue_counts: Dict[str, int] = ss_list.groupby(ss_list).count().to_dict()

    # Add Nodes from secondary structure list
    h = nx.MultiGraph()
    h.add_nodes_from(ss_list)
    nx.set_node_attributes(h, residue_counts, "residue_counts")
    nx.set_node_attributes(h, constituent_residues, "constituent_residues")
    # Assign ss
    for n, d in h.nodes(data=True):
        d["ss"] = n[0]

    # Add graph-level metadata
    h.graph = g.graph
    h.graph["node_type"] = "secondary_structure"

    # Iterate over edges in source graph and add SS-SS edges to new graph.
    for u, v, d in g.edges(data=True):
        try:
            h.add_edge(
                ss_list[u], ss_list[v], kind=d["kind"], source=f"{u}_{v}"
            )
        except KeyError as e:
            log.debug(
                f"Edge {u}-{v} not added to secondary structure graph. \
                Reason: {e} not in graph"
            )

    # Remove self-loops if necessary.
    # Checks for equality between nodes in a given edge.
    if remove_self_loops:
        edges_to_remove: List[Tuple[str]] = [
            (u, v) for u, v in h.edges() if u == v
        ]
        h.remove_edges_from(edges_to_remove)

    # Create weighted graph from h
    if return_weighted_graph:
        return compute_weighted_graph_from_multigraph(h)
    return h


def compute_line_graph(g: nx.Graph, repopulate_data: bool = True) -> nx.Graph:
    """Computes the line graph of a graph.

    The line graph of a graph G has a node for each edge in G and an edge
    joining those nodes if the two edges in G share a common node. For directed
    graphs, nodes are adjacent exactly when the edges they represent form a
    directed path of length two.

    The nodes of the line graph are 2-tuples of nodes in the original graph (or
    3-tuples for multigraphs, with the key of the edge as the third element).

    :param g: Graph to compute the line graph of.
    :type g: nx.Graph
    :param repopulate_data: Whether or not to map node and edge data to edges
        and nodes of the line graph, defaults to True
    :type repopulate_data: bool, optional
    :return: Line graph of g.
    :rtype: nx.Graph
    """
    l_g = nx.generators.line_graph(g)
    l_g.graph = g.graph

    if repopulate_data:
        source_edge_data = {(u, v): d for u, v, d in g.edges(data=True)}
        nx.set_node_attributes(l_g, source_edge_data)

        node_list = {}
        for u, v, d in l_g.edges(data=True):
            node_union = u + v
            for n in node_union:
                if node_union.count(n) > 1:
                    node_list[(u, v)] = n
                    break

        source_node_data = {k: g.nodes[v] for k, v in node_list.items()}
        nx.set_edge_attributes(l_g, source_node_data)
    return l_g