all_abla_numina_oly_orca

This model is a fine-tuned version of /home/test/testdata/models/Meta-Llama-3.1-8B-Instruct on the codefeedback-o1, the magicoder-o1, the magicoder-oss-o1, the mathinstruct-MATH-o1, the mathinstruct-augmented-o1, the numina-cn-k12-o1, the numina-not-cn-k12-o1, the reasoning-001-o1 and the ultramedical_mc_o1 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2059
  • Accuracy: 0.9286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 32
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2107 0.5574 500 0.2142 0.9208
0.1561 1.1148 1000 0.2085 0.9239
0.1547 1.6722 1500 0.1994 0.9265
0.1092 2.2297 2000 0.2073 0.9278
0.1073 2.7871 2500 0.2064 0.9284

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .