Built with Axolotl

See axolotl config

axolotl version: 0.8.0

base_model: NewEden/MistralAI-Nemo-Instruct-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: hardlyworking/HardlyRP
    type: chat_template
    chat_template: chatml
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: jeiku/Writing
    type: completion
    field: text

shuffle_merged_datasets: true
dataset_prepared_path: dataset_preparedss
val_set_size: 0.0025
output_dir: 12b-out-0001-max_grad_norm

hub_model_id: hardlyworking/Sapphire-12B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

max_grad_norm: 0.001

wandb_project: Sapphire
wandb_entity:
wandb_watch:
wandb_name: Sapphire
wandb_log_model:

evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.0001
fsdp:
fsdp_config:
special_tokens:
   pad_token: <pad>

Sapphire-12B

This model is a fine-tuned version of NewEden/MistralAI-Nemo-Instruct-ChatML on the hardlyworking/HardlyRP and the jeiku/Writing datasets. It achieves the following results on the evaluation set:

  • Loss: 1.6799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.8932 0.0033 1 1.9155
1.7729 0.1262 38 1.7802
1.7163 0.2525 76 1.7111
1.6484 0.3787 114 1.6970
1.7006 0.5050 152 1.6907
1.7276 0.6312 190 1.6874
1.7042 0.7575 228 1.6847
1.5575 0.8837 266 1.6825
1.5451 1.0100 304 1.6816
1.6592 1.1362 342 1.6807
1.7344 1.2625 380 1.6805
1.6953 1.3887 418 1.6798
1.5799 1.5150 456 1.6799
1.5241 1.6412 494 1.6799
1.548 1.7674 532 1.6797
1.6254 1.8937 570 1.6799

Framework versions

  • Transformers 4.51.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
45
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hardlyworking/Sapphire-12B

Finetuned
(3)
this model
Finetunes
1 model
Merges
3 models
Quantizations
2 models

Datasets used to train hardlyworking/Sapphire-12B