
Nova-Verse
A NOVA Finetuned model which is specifically trained for decision-driven Story generator.
Model Summary
- Model Name: NovaForCausalLM
- Architecture: Custom decoder-only transformer (
NOVA
) - Model Type:
nova
(Fine-tuned version) - Use Case: Causal Language Modeling (text generation, auto-completion)
- Parameters: 14,412,400 trainable parameters
- Pretrained Tokenizer:
PreTrainedTokenizerFast
- Framework: PyTorch
- Hugging Face Integration: Compatible with
transformers
via customAutoModel
andAutoConfig
registration.
Files Included
File | Description |
---|---|
config.json |
Configuration of model hyperparameters |
model.safetensors |
Serialized model weights (efficient format) |
nova_modelling.py |
Custom model and config class definitions |
tokenizer.json |
Serialized tokenizer |
tokenizer_config.json |
Tokenizer configuration metadata |
special_tokens_map.json |
Mapping for special tokens (e.g., BOS, EOS) |
README.md |
Model card (youβre reading it!) |
Model Architecture
NovaForCausalLM
The model consists of:
- Embedding layers: token + positional
- Stack of transformer decoder blocks
- Multi-head attention with 640 individual heads
- Layer normalization
- Final linear head for vocabulary logits
Configuration (NovaConfig
)
{
"model_type": "nova",
"vocab_size": 6000,
"block_size": 256,
"n_embd": 640,
"n_layer": 4,
"n_head": 8
}
π Usage
Step 1: Clone the repo (to get the nova_modelling.py
)
git clone https://huggingface.co/harshit36/Nova-Verse
cd Nova-Verse
import sys
sys.path.append("./Nova-Verse/") # add current dir to path
from transformers import PreTrainedTokenizerFast
from nova_modelling import NovaConfig, NovaForCausalLM
# Load tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("harshit36/Nova-Verse")
# Load config
config = NovaConfig.from_pretrained("harshit36/Nova-Verse")
# Instantiate model using your custom class
model = NovaForCausalLM(config)
model = model.from_pretrained("harshit36/Nova-Verse")
# Use the model
input_ids = tokenizer("Hello world", return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True).replace(" ","").replace("Δ "," ").replace("Δ","\n"))
Intended Use
Story text generation
Hybrid Positional Encoding Research model (Combination of Sinusoidal and learnable encodings)
Educational demonstrations of custom HF model integration
Rapid prototyping of transformer models
- Downloads last month
- 40
Model tree for harshit36/NOVA-Verse
Base model
harshit36/Nova-Casual-LLM