Logo

Nova-Verse

A NOVA Finetuned model which is specifically trained for decision-driven Story generator.

Model Summary

  • Model Name: NovaForCausalLM
  • Architecture: Custom decoder-only transformer (NOVA)
  • Model Type: nova (Fine-tuned version)
  • Use Case: Causal Language Modeling (text generation, auto-completion)
  • Parameters: 14,412,400 trainable parameters
  • Pretrained Tokenizer: PreTrainedTokenizerFast
  • Framework: PyTorch
  • Hugging Face Integration: Compatible with transformers via custom AutoModel and AutoConfig registration.

Files Included

File Description
config.json Configuration of model hyperparameters
model.safetensors Serialized model weights (efficient format)
nova_modelling.py Custom model and config class definitions
tokenizer.json Serialized tokenizer
tokenizer_config.json Tokenizer configuration metadata
special_tokens_map.json Mapping for special tokens (e.g., BOS, EOS)
README.md Model card (you’re reading it!)

Model Architecture

NovaForCausalLM

The model consists of:

  • Embedding layers: token + positional
  • Stack of transformer decoder blocks
  • Multi-head attention with 640 individual heads
  • Layer normalization
  • Final linear head for vocabulary logits

Configuration (NovaConfig)

{
  "model_type": "nova",
  "vocab_size": 6000,
  "block_size": 256,
  "n_embd": 640,
  "n_layer": 4,
  "n_head": 8
}

πŸš€ Usage

Step 1: Clone the repo (to get the nova_modelling.py)

git clone https://huggingface.co/harshit36/Nova-Verse
cd Nova-Verse
import sys
sys.path.append("./Nova-Verse/")  # add current dir to path

from transformers import PreTrainedTokenizerFast
from nova_modelling import NovaConfig, NovaForCausalLM

# Load tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("harshit36/Nova-Verse")

# Load config
config = NovaConfig.from_pretrained("harshit36/Nova-Verse")

# Instantiate model using your custom class
model = NovaForCausalLM(config)
model = model.from_pretrained("harshit36/Nova-Verse")

# Use the model
input_ids = tokenizer("Hello world", return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True).replace(" ","").replace("Ġ"," ").replace("Ċ","\n"))

Intended Use

Story text generation

Hybrid Positional Encoding Research model (Combination of Sinusoidal and learnable encodings)

Educational demonstrations of custom HF model integration

Rapid prototyping of transformer models

Downloads last month
40
Safetensors
Model size
16.7M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for harshit36/NOVA-Verse

Finetuned
(1)
this model

Dataset used to train harshit36/NOVA-Verse