Uploaded model
- Developed by: hayato-matsushita
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Code
# Google Colabの場合はunslothのインストールのみを行ってください
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
# Settings for HuggingFace
from google.colab import userdata
from huggingface_hub import login
HF_TOKEN=userdata.get('HF_TOKEN')
login(token=HF_TOKEN)
print(login)
#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
# Load a model
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from unsloth import FastLanguageModel
import torch
# Settings
max_seq_length = 2048
dtype = None
load_in_4bit = True
model_id = "llm-jp/llm-jp-3-13b"
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
model,
r = 32,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
max_seq_length = max_seq_length,
)
#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
"""
dataset: 学習に用いるデータセット
ベースコードでは以下のリンクからデータをダウンロードして使います。zipを展開(!unzip)してデータのパスを指定してください。
(https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/)
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎.
ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。
"""
from datasets import load_dataset
dataset = load_dataset("json", data_files="./dataset/ichikara-instruction-003-001-1.json")
dataset
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
input = examples["text"] # 入力データ
output = examples["output"] # 出力データ
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass
# # 各データにフォーマットを適用
dataset = dataset.map(
formatting_prompts_func,
num_proc= 4, # 並列処理数を指定
)
dataset
# データを確認
print(dataset["train"]["formatted_text"][3])
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
args = TrainingArguments(
# バッチとメモリの設定
per_device_train_batch_size=8,
gradient_accumulation_steps=4,
# 学習のスケジューリング
num_train_epochs=3,
learning_rate=2e-5,
warmup_steps=50,
max_steps=-1,
# シンプルなモニタリング設定
logging_steps=10,
logging_first_step=True,
# チェックポイント設定
save_steps=100,
save_total_limit=2,
# A100向け最適化
bf16=True,
gradient_checkpointing=True,
# 高速化設定
optim="adamw_torch_fused",
torch_compile=True,
# データローディング最適化
dataloader_num_workers=4,
dataloader_pin_memory=True,
group_by_length=True,
# その他の基本設定
seed=3407,
output_dir="outputs",
report_to="none",
)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset=dataset["train"],
max_seq_length = max_seq_length,
dataset_text_field="formatted_text",
packing = False,
args = args,
)
#@title 学習実行
trainer_stats = trainer.train()
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
def generate_prompt(input):
prompt = f"""### 指示\n{input}\n###制約- Please provide a thorough and detailed explanation.- You must address exactly the number of items requested - no more, no less.- Break down your thinking process step by step.- Please respond in Japanese.\n### 回答\n"""
return prompt
# 学習したモデルを用いてタスクを実行
from tqdm import tqdm
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = generate_prompt(input)
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
new_model_id = "llm-jp-3-13b-finetune-20241126B"
# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
# csvでも保存
import csv
with open(f"{new_model_id}_output.csv", 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
# ヘッダーを書き込み
writer.writerow(['task_id', 'input', 'output'])
# データを書き込み
for result in results:
writer.writerow([
result['task_id'],
result['input'],
result['output']
])
# モデルとトークナイザーをHugging Faceにアップロード。
# 一旦privateでアップロードしてください。
# 最終成果物が決まったらpublicにするようお願いします。
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。
model.push_to_hub_merged(
new_model_id,
tokenizer=tokenizer,
save_method="lora",
token=HF_TOKEN,
private=True
)
# model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
# tokenizer.push_to_hub(new_model_id, token=HF_TOKEN) # Online saving
Datasets
- ichikara-instruction-003-001-1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for hayato-matsushita/llm-jp-3-13b-finetune-20241126B
Base model
llm-jp/llm-jp-3-13b