heegyu's picture
Model save
f3b40ae verified
---
base_model: Qwen/Qwen2.5-Math-1.5B
library_name: transformers
model_name: Qwen2.5-Math-1.5B-Open-R1-Distill-lora
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2.5-Math-1.5B-Open-R1-Distill-lora
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="heegyu/Qwen2.5-Math-1.5B-Open-R1-Distill-lora", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.14.0.dev0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```