This is the Qwen/Qwen2.5-VL-3B-Instruct model, converted to OpenVINO, with int4 weights for the language model, int8 weights for the other models.
Download Model
To download the model, run pip install huggingface-hub[cli] and then:
huggingface-cli download helenai/Qwen2.5-VL-3B-Instruct-ov-int4 --local-dir Qwen2.5-VL-3B-Instruct-ov-int4
Run inference with OpenVINO GenAI
Use OpenVINO GenAI to run inference on this model. This model works with OpenVINO GenAI 2025.2 and later.
- Install OpenVINO GenAI and pillow:
 
pip install --upgrade openvino-genai pillow
- Download a test image: 
curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg" - Run inference:
 
import numpy as np
import openvino as ov
import openvino_genai
from PIL import Image
# Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU
pipe = openvino_genai.VLMPipeline("Qwen2.5-VL-3B-Instruct-ov-int4", "CPU")
image = Image.open("dog.jpg")
# optional: resizing to a smaller size (depending on image and prompt) is often useful to speed up inference. 
image = image.resize((128, 128))
image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8)
image_data = ov.Tensor(image_data)  
prompt = "Can you describe the image?"
result = pipe.generate(prompt, image=image_data, max_new_tokens=100)
print(result.texts[0])
Model export properties
Model export command:
optimum-cli export openvino -m Qwen/Qwen2.5-VL-3B-Instruct --weight-format int4 Qwen2.5-VL-3B-Instruct-ov-int4
Framework versions
openvino         : 2025.2.0-19140-c01cd93e24d-releases/2025/2
nncf             : 2.17.0.dev0+c6296072
optimum_intel    : 1.26.0.dev0+0e2ccef
optimum          : 1.27.0
pytorch          : 2.7.0+cpu
transformers     : 4.51.3
LLM export properties
all_layers               : False
awq                      : False
backup_mode              : int8_asym
compression_format       : dequantize
gptq                     : False
group_size               : 128
ignored_scope            : []
lora_correction          : False
mode                     : int4_asym
ratio                    : 1.0
scale_estimation         : False
sensitivity_metric       : weight_quantization_error
- Downloads last month
 - 4
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support
Model tree for helenai/Qwen2.5-VL-3B-Instruct-ov-int4
Base model
Qwen/Qwen2.5-VL-3B-Instruct