Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen2.5-VL-3B-Instruct
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
This is the [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) model, converted to OpenVINO, with int4 weights for the language model, int8 weights for the other models.
|
| 7 |
+
|
| 8 |
+
## Download Model
|
| 9 |
+
|
| 10 |
+
To download the model, run `pip install huggingface-hub[cli]` and then:
|
| 11 |
+
```
|
| 12 |
+
huggingface-cli download helenai/Qwen2.5-VL-3B-Instruct-ov-int4 --local-dir Qwen2.5-VL-3B-Instruct-ov-int4
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
## Run inference with OpenVINO GenAI
|
| 16 |
+
|
| 17 |
+
Use OpenVINO GenAI to run inference on this model. This model works with OpenVINO GenAI 2025.2 and later.
|
| 18 |
+
|
| 19 |
+
- Install OpenVINO GenAI and pillow:
|
| 20 |
+
|
| 21 |
+
```
|
| 22 |
+
pip install --upgrade openvino-genai pillow
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
- Download a test image: `curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg"`
|
| 26 |
+
- Run inference:
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
import numpy as np
|
| 30 |
+
import openvino as ov
|
| 31 |
+
import openvino_genai
|
| 32 |
+
from PIL import Image
|
| 33 |
+
|
| 34 |
+
# Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU
|
| 35 |
+
pipe = openvino_genai.VLMPipeline("Qwen2.5-VL-3B-Instruct-ov-int4", "CPU")
|
| 36 |
+
|
| 37 |
+
image = Image.open("dog.jpg")
|
| 38 |
+
# optional: resizing to a smaller size (depending on image and prompt) is often useful to speed up inference.
|
| 39 |
+
image = image.resize((128, 128))
|
| 40 |
+
|
| 41 |
+
image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8)
|
| 42 |
+
image_data = ov.Tensor(image_data)
|
| 43 |
+
|
| 44 |
+
prompt = "Can you describe the image?"
|
| 45 |
+
result = pipe.generate(prompt, image=image_data, max_new_tokens=100)
|
| 46 |
+
print(result.texts[0])
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
See [OpenVINO GenAI repository](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#performing-visual-language-text-generation)
|
| 50 |
+
|
| 51 |
+
## Model export properties
|
| 52 |
+
|
| 53 |
+
Model export command:
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
optimum-cli export openvino -m Qwen/Qwen2.5-VL-3B-Instruct --weight-format int4 Qwen2.5-VL-3B-Instruct-ov-int4
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
### Framework versions
|
| 60 |
+
|
| 61 |
+
```
|
| 62 |
+
openvino : 2025.2.0-19140-c01cd93e24d-releases/2025/2
|
| 63 |
+
nncf : 2.17.0.dev0+c6296072
|
| 64 |
+
optimum_intel : 1.26.0.dev0+0e2ccef
|
| 65 |
+
optimum : 1.27.0
|
| 66 |
+
pytorch : 2.7.0+cpu
|
| 67 |
+
transformers : 4.51.3
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### LLM export properties
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
all_layers : False
|
| 74 |
+
awq : False
|
| 75 |
+
backup_mode : int8_asym
|
| 76 |
+
compression_format : dequantize
|
| 77 |
+
gptq : False
|
| 78 |
+
group_size : 128
|
| 79 |
+
ignored_scope : []
|
| 80 |
+
lora_correction : False
|
| 81 |
+
mode : int4_asym
|
| 82 |
+
ratio : 1.0
|
| 83 |
+
scale_estimation : False
|
| 84 |
+
sensitivity_metric : weight_quantization_error
|
| 85 |
+
```
|