See axolotl config
axolotl version: 0.9.0
base_model: google/gemma-3-1b-it
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: hello231/hindai-model
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: false
load_in_8bit: false
load_in_4bit: true
bnb_4bit_quant_type: nf4
bnb_4bit_compute_dtype: float16
bnb_4bit_use_double_quant: true
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
# huggingface repo
chat_template: gemma3
datasets:
- path: Finsocial/identity
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.0
output_dir: ./outputs/out
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: false
fp16: true
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: false
warmup_ratio: 0.1
evals_per_epoch:
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
outputs/out
This model is a fine-tuned version of google/gemma-3-1b-it on the Finsocial/identity dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 4.0
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support