Built with Axolotl

See axolotl config

axolotl version: 0.9.0

base_model: google/gemma-3-1b-it
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: hello231/hindai-model

# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: false

load_in_8bit: false
load_in_4bit: true
bnb_4bit_quant_type: nf4
bnb_4bit_compute_dtype: float16
bnb_4bit_use_double_quant: true

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

# huggingface repo
chat_template: gemma3
datasets:
  - path: Finsocial/identity
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

val_set_size: 0.0
output_dir: ./outputs/out

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: false
fp16: true

gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: false

warmup_ratio: 0.1
evals_per_epoch:
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/out

This model is a fine-tuned version of google/gemma-3-1b-it on the Finsocial/identity dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hello231/hindai-model

Adapter
(95)
this model

Dataset used to train hello231/hindai-model