YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
created using the following code based on https://github.com/huggingface/diffusers/blob/main/tests/pipelines/hidream/test_pipeline_hidream.py
import numpy as np
import torch
from transformers import (
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
LlamaForCausalLM,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
HiDreamImagePipeline,
HiDreamImageTransformer2DModel,
)
def get_dummy_components():
torch.manual_seed(0)
transformer = HiDreamImageTransformer2DModel(
patch_size=2,
in_channels=4,
out_channels=4,
num_layers=1,
num_single_layers=1,
attention_head_dim=8,
num_attention_heads=4,
caption_channels=[32, 16],
text_emb_dim=64,
num_routed_experts=4,
num_activated_experts=2,
axes_dims_rope=(4, 2, 2),
max_resolution=(32, 32),
llama_layers=(0, 1),
).eval()
torch.manual_seed(0)
vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
max_position_embeddings=128,
)
torch.manual_seed(0)
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
text_encoder_4.generation_config.pad_token_id = 1
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
scheduler = FlowMatchEulerDiscreteScheduler()
components = {
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"text_encoder_3": text_encoder_3,
"tokenizer_3": tokenizer_3,
"text_encoder_4": text_encoder_4,
"tokenizer_4": tokenizer_4,
"transformer": transformer,
}
return components
if __name__ == "__main__":
components = get_dummy_components()
pipeline = HiDreamImagePipeline(**components)
pipeline.push_to_hub("hf-internal-testing/tiny-hidream-i1-pipe")
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.