wav2vec2-large-mms-1b-arabic-colab
This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.2922
- Wer: 0.2591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
18.9344 | 0.19 | 100 | 17.8048 | 1.0 |
15.6959 | 0.38 | 200 | 14.1448 | 1.0 |
11.9387 | 0.57 | 300 | 9.8417 | 1.0 |
7.554 | 0.76 | 400 | 5.3727 | 1.0 |
4.3953 | 0.95 | 500 | 3.5681 | 1.0 |
3.3533 | 1.14 | 600 | 3.1439 | 1.0 |
2.9309 | 1.33 | 700 | 2.5171 | 0.9987 |
2.1985 | 1.52 | 800 | 1.7128 | 0.8522 |
1.5126 | 1.71 | 900 | 1.1276 | 0.5744 |
1.0376 | 1.9 | 1000 | 0.7830 | 0.4400 |
0.7702 | 2.09 | 1100 | 0.5959 | 0.3765 |
0.6274 | 2.28 | 1200 | 0.4986 | 0.3363 |
0.5423 | 2.47 | 1300 | 0.4473 | 0.3197 |
0.494 | 2.66 | 1400 | 0.4153 | 0.3046 |
0.4372 | 2.85 | 1500 | 0.3940 | 0.2946 |
0.4667 | 3.04 | 1600 | 0.3791 | 0.2887 |
0.4228 | 3.23 | 1700 | 0.3670 | 0.2823 |
0.4177 | 3.42 | 1800 | 0.3571 | 0.2803 |
0.3824 | 3.61 | 1900 | 0.3494 | 0.2789 |
0.4002 | 3.8 | 2000 | 0.3435 | 0.2782 |
0.4112 | 3.99 | 2100 | 0.3385 | 0.2776 |
0.3788 | 4.18 | 2200 | 0.3342 | 0.2768 |
0.4079 | 4.37 | 2300 | 0.3305 | 0.2752 |
0.3939 | 4.56 | 2400 | 0.3271 | 0.2733 |
0.3601 | 4.75 | 2500 | 0.3250 | 0.2724 |
0.3443 | 4.94 | 2600 | 0.3223 | 0.2727 |
0.3723 | 5.13 | 2700 | 0.3200 | 0.2724 |
0.3669 | 5.32 | 2800 | 0.3182 | 0.2704 |
0.3117 | 5.51 | 2900 | 0.3167 | 0.2693 |
0.3658 | 5.7 | 3000 | 0.3150 | 0.2694 |
0.3731 | 5.89 | 3100 | 0.3132 | 0.2683 |
0.3542 | 6.08 | 3200 | 0.3122 | 0.2684 |
0.3667 | 6.27 | 3300 | 0.3108 | 0.2681 |
0.3115 | 6.46 | 3400 | 0.3099 | 0.2671 |
0.3466 | 6.65 | 3500 | 0.3092 | 0.2663 |
0.3497 | 6.84 | 3600 | 0.3082 | 0.2656 |
0.3276 | 7.03 | 3700 | 0.3076 | 0.2667 |
0.3316 | 7.22 | 3800 | 0.3070 | 0.2651 |
0.3324 | 7.41 | 3900 | 0.3060 | 0.2656 |
0.323 | 7.6 | 4000 | 0.3054 | 0.2661 |
0.3411 | 7.79 | 4100 | 0.3045 | 0.2641 |
0.3583 | 7.98 | 4200 | 0.3037 | 0.2649 |
0.3299 | 8.17 | 4300 | 0.3035 | 0.2649 |
0.2899 | 8.37 | 4400 | 0.3030 | 0.2643 |
0.3432 | 8.56 | 4500 | 0.3025 | 0.2651 |
0.3275 | 8.75 | 4600 | 0.3018 | 0.2631 |
0.3652 | 8.94 | 4700 | 0.3011 | 0.2637 |
0.3373 | 9.13 | 4800 | 0.3009 | 0.2626 |
0.3097 | 9.32 | 4900 | 0.3005 | 0.2627 |
0.3163 | 9.51 | 5000 | 0.2997 | 0.2623 |
0.3443 | 9.7 | 5100 | 0.2995 | 0.2623 |
0.346 | 9.89 | 5200 | 0.2989 | 0.2626 |
0.302 | 10.08 | 5300 | 0.2988 | 0.2624 |
0.3252 | 10.27 | 5400 | 0.2983 | 0.2623 |
0.3316 | 10.46 | 5500 | 0.2980 | 0.2632 |
0.3424 | 10.65 | 5600 | 0.2975 | 0.2629 |
0.3205 | 10.84 | 5700 | 0.2977 | 0.2622 |
0.3164 | 11.03 | 5800 | 0.2973 | 0.2618 |
0.3348 | 11.22 | 5900 | 0.2968 | 0.2619 |
0.3236 | 11.41 | 6000 | 0.2967 | 0.2612 |
0.3073 | 11.6 | 6100 | 0.2962 | 0.2627 |
0.3129 | 11.79 | 6200 | 0.2964 | 0.2623 |
0.3319 | 11.98 | 6300 | 0.2961 | 0.2621 |
0.2974 | 12.17 | 6400 | 0.2960 | 0.2613 |
0.3557 | 12.36 | 6500 | 0.2955 | 0.2612 |
0.3068 | 12.55 | 6600 | 0.2957 | 0.2619 |
0.3292 | 12.74 | 6700 | 0.2954 | 0.2619 |
0.3278 | 12.93 | 6800 | 0.2952 | 0.2612 |
0.314 | 13.12 | 6900 | 0.2948 | 0.2614 |
0.3182 | 13.31 | 7000 | 0.2949 | 0.2618 |
0.3322 | 13.5 | 7100 | 0.2948 | 0.2612 |
0.3089 | 13.69 | 7200 | 0.2944 | 0.2616 |
0.3176 | 13.88 | 7300 | 0.2943 | 0.2613 |
0.3025 | 14.07 | 7400 | 0.2942 | 0.2612 |
0.3277 | 14.26 | 7500 | 0.2941 | 0.2613 |
0.3241 | 14.45 | 7600 | 0.2940 | 0.2617 |
0.3084 | 14.64 | 7700 | 0.2938 | 0.2614 |
0.324 | 14.83 | 7800 | 0.2935 | 0.2612 |
0.3229 | 15.02 | 7900 | 0.2934 | 0.2609 |
0.3224 | 15.21 | 8000 | 0.2933 | 0.2602 |
0.2859 | 15.4 | 8100 | 0.2932 | 0.2604 |
0.3173 | 15.59 | 8200 | 0.2931 | 0.2598 |
0.3399 | 15.78 | 8300 | 0.2931 | 0.2602 |
0.3176 | 15.97 | 8400 | 0.2930 | 0.2598 |
0.2993 | 16.16 | 8500 | 0.2930 | 0.2602 |
0.3289 | 16.35 | 8600 | 0.2930 | 0.2598 |
0.3149 | 16.54 | 8700 | 0.2928 | 0.2601 |
0.3172 | 16.73 | 8800 | 0.2927 | 0.2599 |
0.3204 | 16.92 | 8900 | 0.2926 | 0.2597 |
0.3117 | 17.11 | 9000 | 0.2926 | 0.2604 |
0.3051 | 17.3 | 9100 | 0.2927 | 0.2608 |
0.3296 | 17.49 | 9200 | 0.2927 | 0.2604 |
0.309 | 17.68 | 9300 | 0.2926 | 0.2602 |
0.3138 | 17.87 | 9400 | 0.2925 | 0.2593 |
0.2802 | 18.06 | 9500 | 0.2925 | 0.2594 |
0.308 | 18.25 | 9600 | 0.2925 | 0.2593 |
0.3076 | 18.44 | 9700 | 0.2925 | 0.2591 |
0.312 | 18.63 | 9800 | 0.2923 | 0.2592 |
0.31 | 18.82 | 9900 | 0.2923 | 0.2593 |
0.3317 | 19.01 | 10000 | 0.2923 | 0.2592 |
0.3357 | 19.2 | 10100 | 0.2923 | 0.2593 |
0.302 | 19.39 | 10200 | 0.2922 | 0.2596 |
0.294 | 19.58 | 10300 | 0.2923 | 0.2592 |
0.3158 | 19.77 | 10400 | 0.2923 | 0.2593 |
0.3025 | 19.96 | 10500 | 0.2922 | 0.2591 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for hiba2/wav2vec2-large-mms-1b-arabic-colab
Base model
facebook/mms-1b-all