xlmr-lstm-crf-resume-ner2
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3688
- Precision: 0.7289
- Recall: 0.7578
- F1: 0.7431
- Accuracy: 0.9403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.6224 | 1.0 | 17 | 1.1537 | 0.9517 | 0.0367 | 0.0707 | 0.8445 |
1.0702 | 2.0 | 34 | 0.9869 | 0.0 | 0.0 | 0.0 | 0.8483 |
0.8288 | 3.0 | 51 | 0.6899 | 0.0287 | 0.0029 | 0.0053 | 0.8586 |
0.6586 | 4.0 | 68 | 0.5719 | 0.1512 | 0.0378 | 0.0605 | 0.8705 |
0.5433 | 5.0 | 85 | 0.4887 | 0.2649 | 0.0873 | 0.1313 | 0.8745 |
0.4696 | 6.0 | 102 | 0.4358 | 0.1852 | 0.0631 | 0.0941 | 0.8822 |
0.4114 | 7.0 | 119 | 0.3901 | 0.4455 | 0.3463 | 0.3897 | 0.8914 |
0.3631 | 8.0 | 136 | 0.3684 | 0.4111 | 0.3891 | 0.3998 | 0.9006 |
0.3239 | 9.0 | 153 | 0.3457 | 0.4668 | 0.4991 | 0.4824 | 0.9024 |
0.3047 | 10.0 | 170 | 0.3195 | 0.5824 | 0.4693 | 0.5198 | 0.9142 |
0.2775 | 11.0 | 187 | 0.3110 | 0.5384 | 0.5206 | 0.5294 | 0.9130 |
0.2518 | 12.0 | 204 | 0.3078 | 0.6492 | 0.4703 | 0.5455 | 0.9176 |
0.2362 | 13.0 | 221 | 0.3036 | 0.5136 | 0.5739 | 0.5420 | 0.9130 |
0.2174 | 14.0 | 238 | 0.2983 | 0.5499 | 0.6023 | 0.5749 | 0.9146 |
0.2037 | 15.0 | 255 | 0.2909 | 0.6167 | 0.5656 | 0.5900 | 0.9234 |
0.1842 | 16.0 | 272 | 0.3100 | 0.5866 | 0.6141 | 0.6000 | 0.9201 |
0.1706 | 17.0 | 289 | 0.2949 | 0.6067 | 0.6234 | 0.6149 | 0.9231 |
0.1648 | 18.0 | 306 | 0.2992 | 0.6047 | 0.6188 | 0.6117 | 0.9239 |
0.1485 | 19.0 | 323 | 0.2972 | 0.6012 | 0.6761 | 0.6364 | 0.9228 |
0.1381 | 20.0 | 340 | 0.2910 | 0.6372 | 0.6423 | 0.6397 | 0.9282 |
0.1259 | 21.0 | 357 | 0.2822 | 0.6575 | 0.6534 | 0.6555 | 0.9310 |
0.1178 | 22.0 | 374 | 0.3007 | 0.6297 | 0.6862 | 0.6567 | 0.9278 |
0.1123 | 23.0 | 391 | 0.2864 | 0.6537 | 0.6859 | 0.6694 | 0.9308 |
0.1017 | 24.0 | 408 | 0.2988 | 0.6924 | 0.6849 | 0.6886 | 0.9360 |
0.0961 | 25.0 | 425 | 0.3043 | 0.6219 | 0.7080 | 0.6622 | 0.9299 |
0.091 | 26.0 | 442 | 0.3092 | 0.6389 | 0.7298 | 0.6813 | 0.9293 |
0.0866 | 27.0 | 459 | 0.3121 | 0.6346 | 0.6806 | 0.6568 | 0.9278 |
0.0808 | 28.0 | 476 | 0.2988 | 0.7084 | 0.7040 | 0.7062 | 0.9376 |
0.0723 | 29.0 | 493 | 0.2962 | 0.6888 | 0.7112 | 0.6998 | 0.9372 |
0.0692 | 30.0 | 510 | 0.3080 | 0.6906 | 0.7248 | 0.7073 | 0.9365 |
0.0627 | 31.0 | 527 | 0.3178 | 0.6683 | 0.7077 | 0.6874 | 0.9342 |
0.0647 | 32.0 | 544 | 0.3044 | 0.7079 | 0.7211 | 0.7144 | 0.9380 |
0.0557 | 33.0 | 561 | 0.3157 | 0.7206 | 0.7200 | 0.7203 | 0.9382 |
0.0532 | 34.0 | 578 | 0.3220 | 0.6841 | 0.7501 | 0.7156 | 0.9371 |
0.0496 | 35.0 | 595 | 0.3206 | 0.6452 | 0.7565 | 0.6964 | 0.9314 |
0.0494 | 36.0 | 612 | 0.3203 | 0.6901 | 0.7533 | 0.7203 | 0.9376 |
0.0426 | 37.0 | 629 | 0.3348 | 0.7123 | 0.7408 | 0.7263 | 0.9374 |
0.0416 | 38.0 | 646 | 0.3317 | 0.7065 | 0.7389 | 0.7224 | 0.9376 |
0.0418 | 39.0 | 663 | 0.3323 | 0.7099 | 0.7378 | 0.7236 | 0.9379 |
0.0372 | 40.0 | 680 | 0.3322 | 0.7087 | 0.7543 | 0.7308 | 0.9383 |
0.0349 | 41.0 | 697 | 0.3295 | 0.7213 | 0.7261 | 0.7237 | 0.9381 |
0.0357 | 42.0 | 714 | 0.3474 | 0.7 | 0.7471 | 0.7228 | 0.9368 |
0.034 | 43.0 | 731 | 0.3342 | 0.7158 | 0.7554 | 0.7350 | 0.9384 |
0.0301 | 44.0 | 748 | 0.3417 | 0.7271 | 0.7423 | 0.7346 | 0.9397 |
0.0297 | 45.0 | 765 | 0.3416 | 0.7284 | 0.7501 | 0.7391 | 0.9397 |
0.0278 | 46.0 | 782 | 0.3583 | 0.7254 | 0.7567 | 0.7408 | 0.9403 |
0.0264 | 47.0 | 799 | 0.3515 | 0.7246 | 0.7583 | 0.7411 | 0.9405 |
0.0254 | 48.0 | 816 | 0.3544 | 0.7147 | 0.7628 | 0.7380 | 0.9405 |
0.0239 | 49.0 | 833 | 0.3555 | 0.7161 | 0.7706 | 0.7423 | 0.9392 |
0.0227 | 50.0 | 850 | 0.3611 | 0.7164 | 0.7687 | 0.7417 | 0.9400 |
0.023 | 51.0 | 867 | 0.3646 | 0.7080 | 0.7687 | 0.7371 | 0.9389 |
0.0217 | 52.0 | 884 | 0.3718 | 0.7344 | 0.7639 | 0.7489 | 0.9404 |
0.0214 | 53.0 | 901 | 0.3656 | 0.7137 | 0.7618 | 0.7370 | 0.9397 |
0.0197 | 54.0 | 918 | 0.3700 | 0.7060 | 0.7612 | 0.7326 | 0.9387 |
0.019 | 55.0 | 935 | 0.3764 | 0.7166 | 0.7762 | 0.7452 | 0.9401 |
0.0183 | 56.0 | 952 | 0.3688 | 0.7289 | 0.7578 | 0.7431 | 0.9403 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for hiendang7613/xlmr-lstm-crf-resume-ner2
Base model
FacebookAI/xlm-roberta-base