GPT2-Large LoRA Fine-tuned for Natural Language Inference
This model is a LoRA (Low-Rank Adaptation) fine-tuned version of GPT2-large for Natural Language Inference (NLI) on the MultiNLI dataset.
Model Details
- Base Model: GPT2-large (774M parameters)
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Trainable Parameters: ~2.3M (0.3% of total parameters)
- Dataset: MultiNLI (50K training samples)
- Task: Natural Language Inference (3-class classification)
Performance
- Test Accuracy (Matched): ~79.22%
- Test Accuracy (Mismatched): ~80.38%
- Training Method: Parameter-efficient fine-tuning with LoRA
- Hardware: Trained on 36G vGPU
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
base_model = AutoModelForCausalLM.from_pretrained("gpt2-large")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "hilaryc112/LoRA-GPT2-Project")
# Format input
premise = "A person is outdoors, on a horse."
hypothesis = "A person is at a diner, ordering an omelette."
input_text = f"Premise: {premise}\nHypothesis: {hypothesis}\nRelationship:"
# Tokenize and generate
inputs = tokenizer(input_text, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=10, pad_token_id=tokenizer.eos_token_id)
prediction = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True).strip()
print(f"Prediction: {prediction}") # Should output: contradiction, neutral, or entailment
Training Configuration
{ "model_name": "gpt2-large", "max_length": 512, "lora_r": 16, "lora_alpha": 32, "lora_dropout": 0.1, "target_modules": [ "c_attn", "c_proj", "c_fc" ], "num_epochs": 3, "train_batch_size": 4, "eval_batch_size": 12, "gradient_accumulation_steps": 6, "learning_rate": 0.0002, "weight_decay": 0.01, "max_grad_norm": 1.0, "use_fp16": true, "gradient_checkpointing": true, "logging_steps": 100, "eval_steps": 500, "save_steps": 500, "save_total_limit": 3, "early_stopping_patience": 5, "data_dir": "./processed_data", "output_dir": "./gpt2_lora_multinli", "seed": 42, "use_wandb": false, "_comments": { "effective_batch_size": "6 * 6 = 36 (optimized for 36G vGPU)", "memory_optimization": "FP16 + gradient checkpointing enabled", "lora_config": "Rank 16 with alpha 32 for good performance/efficiency balance", "target_modules": "GPT2 attention and MLP layers for comprehensive adaptation", "training_data": "Uses 50K samples from MultiNLI training set (configured in preprocessing)", "evaluation_data": "Uses local dev files for matched/mismatched evaluation", "training_adjustments": "Reduced epochs to 2 and LR to 1e-4 for better training with real data", "eval_frequency": "Less frequent evaluation (every 500 steps) due to larger dataset" } }
Dataset Format
The model was trained on text-to-text format:
Premise: [premise text]
Hypothesis: [hypothesis text]
Relationship: [entailment/neutral/contradiction]
Files
adapter_config.json: LoRA adapter configurationadapter_model.safetensors: LoRA adapter weightstraining_config.json: Training hyperparameters and settings
Citation
If you use this model, please cite:
@misc{gpt2-lora-multinli,
title={GPT2-Large LoRA Fine-tuned for Natural Language Inference},
author={HilaryKChen},
year={2024},
howpublished={\url{https://huggingface.co/hilaryc112/LoRA-GPT2-Project}}
}
License
This model is released under the MIT License.
- Downloads last month
- -
Model tree for hilaryc112/LoRA-GPT2-Project
Base model
openai-community/gpt2-large