hkivancoral's picture
End of training
fe8ebae
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7073170731707317

hushem_1x_deit_base_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6418
  • Accuracy: 0.7073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3016 0.3415
1.352 2.0 12 1.2693 0.4878
1.352 3.0 18 1.2337 0.4878
1.192 4.0 24 1.1939 0.5122
1.066 5.0 30 1.1544 0.5854
1.066 6.0 36 1.1118 0.5854
0.8995 7.0 42 1.0631 0.6098
0.8995 8.0 48 1.0130 0.5854
0.7427 9.0 54 0.9666 0.6341
0.6143 10.0 60 0.9418 0.6098
0.6143 11.0 66 0.9096 0.6341
0.4971 12.0 72 0.8791 0.6341
0.4971 13.0 78 0.8576 0.6341
0.3974 14.0 84 0.8299 0.6341
0.3312 15.0 90 0.8125 0.6585
0.3312 16.0 96 0.7924 0.6585
0.2583 17.0 102 0.7878 0.6341
0.2583 18.0 108 0.7665 0.6341
0.2053 19.0 114 0.7402 0.6585
0.1711 20.0 120 0.7303 0.6585
0.1711 21.0 126 0.7219 0.6585
0.1383 22.0 132 0.7157 0.6341
0.1383 23.0 138 0.6921 0.6585
0.1073 24.0 144 0.6843 0.6585
0.0942 25.0 150 0.6833 0.6585
0.0942 26.0 156 0.6687 0.6585
0.0772 27.0 162 0.6726 0.7073
0.0772 28.0 168 0.6619 0.6585
0.0641 29.0 174 0.6481 0.6585
0.0563 30.0 180 0.6452 0.7073
0.0563 31.0 186 0.6508 0.7073
0.0487 32.0 192 0.6523 0.7073
0.0487 33.0 198 0.6468 0.7073
0.0422 34.0 204 0.6452 0.7073
0.0402 35.0 210 0.6443 0.7073
0.0402 36.0 216 0.6441 0.7073
0.0375 37.0 222 0.6438 0.7073
0.0375 38.0 228 0.6434 0.7073
0.0345 39.0 234 0.6428 0.7073
0.0342 40.0 240 0.6422 0.7073
0.0342 41.0 246 0.6417 0.7073
0.0339 42.0 252 0.6418 0.7073
0.0339 43.0 258 0.6418 0.7073
0.0327 44.0 264 0.6418 0.7073
0.0338 45.0 270 0.6418 0.7073
0.0338 46.0 276 0.6418 0.7073
0.033 47.0 282 0.6418 0.7073
0.033 48.0 288 0.6418 0.7073
0.0336 49.0 294 0.6418 0.7073
0.0342 50.0 300 0.6418 0.7073

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0