hkivancoral's picture
End of training
7dbedc8
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2682926829268293

hushem_5x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3702
  • Accuracy: 0.2683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5914 1.0 28 1.5102 0.2195
1.502 2.0 56 1.4998 0.2439
1.5359 3.0 84 1.4897 0.2439
1.4953 4.0 112 1.4806 0.2195
1.505 5.0 140 1.4721 0.2439
1.5366 6.0 168 1.4645 0.2439
1.5251 7.0 196 1.4572 0.2439
1.4698 8.0 224 1.4506 0.2439
1.4915 9.0 252 1.4443 0.2439
1.4618 10.0 280 1.4384 0.2439
1.4473 11.0 308 1.4329 0.2439
1.4682 12.0 336 1.4279 0.2439
1.4426 13.0 364 1.4233 0.2439
1.4128 14.0 392 1.4190 0.2683
1.4363 15.0 420 1.4150 0.2683
1.4383 16.0 448 1.4113 0.2683
1.4168 17.0 476 1.4079 0.2683
1.4317 18.0 504 1.4047 0.2683
1.4208 19.0 532 1.4016 0.2927
1.4021 20.0 560 1.3989 0.2927
1.4325 21.0 588 1.3963 0.2927
1.4072 22.0 616 1.3940 0.2927
1.3729 23.0 644 1.3918 0.2927
1.3955 24.0 672 1.3898 0.2927
1.3868 25.0 700 1.3879 0.2927
1.3985 26.0 728 1.3861 0.2683
1.3854 27.0 756 1.3845 0.2683
1.3968 28.0 784 1.3830 0.2683
1.3689 29.0 812 1.3816 0.2683
1.4069 30.0 840 1.3803 0.2683
1.387 31.0 868 1.3791 0.2683
1.3786 32.0 896 1.3780 0.2683
1.3773 33.0 924 1.3769 0.2683
1.3779 34.0 952 1.3760 0.2683
1.3797 35.0 980 1.3751 0.2683
1.3671 36.0 1008 1.3744 0.2683
1.3638 37.0 1036 1.3737 0.2683
1.3614 38.0 1064 1.3731 0.2683
1.3646 39.0 1092 1.3725 0.2683
1.3609 40.0 1120 1.3720 0.2683
1.3899 41.0 1148 1.3716 0.2683
1.3896 42.0 1176 1.3712 0.2683
1.3725 43.0 1204 1.3709 0.2683
1.3896 44.0 1232 1.3706 0.2683
1.3695 45.0 1260 1.3704 0.2683
1.3698 46.0 1288 1.3703 0.2683
1.3813 47.0 1316 1.3702 0.2683
1.3636 48.0 1344 1.3702 0.2683
1.3528 49.0 1372 1.3702 0.2683
1.3747 50.0 1400 1.3702 0.2683

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0