hkivancoral's picture
End of training
81f4664
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8416666666666667

smids_1x_deit_tiny_adamax_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4240
  • Accuracy: 0.8417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7806 1.0 75 0.5704 0.7533
0.5207 2.0 150 0.5966 0.73
0.4092 3.0 225 0.5340 0.7933
0.4512 4.0 300 0.5755 0.76
0.3687 5.0 375 0.4431 0.8133
0.3021 6.0 450 0.4574 0.8317
0.3551 7.0 525 0.5806 0.8033
0.2614 8.0 600 0.5093 0.82
0.2361 9.0 675 0.5262 0.8333
0.1424 10.0 750 0.7202 0.83
0.1293 11.0 825 0.6267 0.8333
0.079 12.0 900 0.7445 0.845
0.1031 13.0 975 0.7831 0.8333
0.0209 14.0 1050 0.7336 0.8433
0.0822 15.0 1125 0.7507 0.8217
0.0881 16.0 1200 0.8785 0.8017
0.0659 17.0 1275 0.8910 0.8283
0.0765 18.0 1350 0.9993 0.825
0.0616 19.0 1425 0.7662 0.8417
0.0408 20.0 1500 0.7907 0.8517
0.0173 21.0 1575 1.0410 0.8383
0.0139 22.0 1650 1.0413 0.8333
0.0185 23.0 1725 1.0477 0.84
0.0006 24.0 1800 1.0787 0.8433
0.0277 25.0 1875 1.0695 0.83
0.0122 26.0 1950 1.1331 0.8517
0.0367 27.0 2025 1.3452 0.8283
0.0236 28.0 2100 1.0892 0.83
0.0104 29.0 2175 1.1352 0.8483
0.0001 30.0 2250 1.2537 0.8367
0.0002 31.0 2325 1.2507 0.8317
0.003 32.0 2400 1.2991 0.8333
0.0046 33.0 2475 1.2933 0.8333
0.0054 34.0 2550 1.3552 0.8317
0.0087 35.0 2625 1.3586 0.8333
0.0052 36.0 2700 1.3844 0.8367
0.0022 37.0 2775 1.3958 0.84
0.0 38.0 2850 1.4041 0.8417
0.0 39.0 2925 1.4038 0.84
0.0 40.0 3000 1.4046 0.8433
0.0 41.0 3075 1.4005 0.8433
0.0031 42.0 3150 1.4048 0.8417
0.0035 43.0 3225 1.4072 0.8433
0.0 44.0 3300 1.4113 0.8417
0.0028 45.0 3375 1.4120 0.8417
0.0026 46.0 3450 1.4166 0.84
0.0061 47.0 3525 1.4166 0.8417
0.0 48.0 3600 1.4221 0.84
0.0 49.0 3675 1.4223 0.84
0.0046 50.0 3750 1.4240 0.8417

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0