stefan-it commited on
Commit
e36a7ad
1 Parent(s): 76c99fb

readme: add initial version of model card

Browse files

Hey,

this commit adds the initial version of model card.

Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: de
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: dbmdz/bert-tiny-historic-multilingual-cased
9
+ widget:
10
+ - text: In Teltsch und Jarmeritz wurden die abgegebenen Stimmen für Genossen Krapka
11
+ ungiltig erklärt , weil sie keinen Wohnort aufwiesen .
12
+ ---
13
+
14
+ # Fine-tuned Flair Model on German NewsEye NER Dataset (HIPE-2022)
15
+
16
+ This Flair model was fine-tuned on the
17
+ [German NewsEye](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md)
18
+ NER Dataset using hmBERT Tiny as backbone LM.
19
+
20
+ The NewsEye dataset is comprised of diachronic historical newspaper material published between 1850 and 1950
21
+ in French, German, Finnish, and Swedish.
22
+ More information can be found [here](https://dl.acm.org/doi/abs/10.1145/3404835.3463255).
23
+
24
+ The following NEs were annotated: `PER`, `LOC`, `ORG` and `HumanProd`.
25
+
26
+ # Results
27
+
28
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
29
+
30
+ * Batch Sizes: `[4, 8]`
31
+ * Learning Rates: `[5e-05, 3e-05]`
32
+
33
+ And report micro F1-score on development set:
34
+
35
+ | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
36
+ |-------------------|----------------|--------------|--------------|--------------|--------------|-----------------|
37
+ | `bs8-e10-lr5e-05` | [**0.303**][1] | [0.2873][2] | [0.2881][3] | [0.2866][4] | [0.2788][5] | 0.2888 ± 0.0088 |
38
+ | `bs4-e10-lr3e-05` | [0.2984][6] | [0.311][7] | [0.2718][8] | [0.2702][9] | [0.2598][10] | 0.2822 ± 0.0215 |
39
+ | `bs4-e10-lr5e-05` | [0.2907][11] | [0.288][12] | [0.276][13] | [0.268][14] | [0.2736][15] | 0.2793 ± 0.0097 |
40
+ | `bs8-e10-lr3e-05` | [0.2863][16] | [0.2771][17] | [0.2732][18] | [0.2812][19] | [0.2657][20] | 0.2767 ± 0.0078 |
41
+
42
+ [1]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
43
+ [2]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
44
+ [3]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
45
+ [4]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
46
+ [5]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
47
+ [6]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
48
+ [7]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
49
+ [8]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
50
+ [9]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
51
+ [10]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
52
+ [11]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
53
+ [12]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
54
+ [13]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
55
+ [14]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
56
+ [15]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
57
+ [16]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
58
+ [17]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
59
+ [18]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
60
+ [19]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
61
+ [20]: https://hf.co/stefan-it/hmbench-newseye-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
62
+
63
+ The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
64
+
65
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
66
+
67
+ # Acknowledgements
68
+
69
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
70
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
71
+
72
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
73
+ Many Thanks for providing access to the TPUs ❤️