SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
This is a sentence-transformers model finetuned from hon9kon9ize/bert-large-cantonese-nli on the yue-stsb, stsb and C-MTEB/STSB dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hon9kon9ize/bert-large-cantonese-nli
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'一個細路女同一個細路仔喺度睇書。',
'一個大啲嘅小朋友玩緊公仔,望住窗外。',
'有個男人彈緊結他。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.7983 | 0.7638 |
| spearman_cosine | 0.7996 | 0.7605 |
Training Details
Training Dataset
yue-stsb
Size: 5,749 training samples
Columns:
sentence1,sentence2, andscoreApproximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.24 tokens
- max: 40 tokens
- min: 7 tokens
- mean: 12.21 tokens
- max: 30 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
Samples:
sentence1 sentence2 score 架飛機正準備起飛。一架飛機正準備起飛。1.0有個男人吹緊一支好大嘅笛。有個男人吹緊笛。0.76有個男人喺批薩上面灑碎芝士。有個男人將磨碎嘅芝士灑落一塊未焗嘅批薩上面。0.76Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }Size: 16,729 training samples
Columns:
sentence1,sentence2, andscoreApproximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 20.29 tokens
- max: 74 tokens
- min: 6 tokens
- mean: 20.36 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.52
- max: 1.0
Samples:
sentence1 sentence2 score 奧巴馬登記咗參加奧巴馬醫保。美國人爭住喺限期前登記參加奧巴馬醫保計劃,0.24Search ends for missing asylum-seekersSearch narrowed for missing man0.28檢察官喺五月突然轉軚,要求公開驗屍報告,因為有利於辯方嘅康納·彼得森驗屍報告部分內容已經洩露畀媒體。佢哋要求公開驗屍報告,因為彼得森腹中胎兒嘅驗屍報告中,對辯方有利嘅部分已經洩露俾傳媒。0.8Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 4,458 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 19.76 tokens
- max: 53 tokens
- min: 7 tokens
- mean: 19.65 tokens
- max: 53 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 有個戴住安全帽嘅男人喺度跳舞。有個戴住安全帽嘅男人喺度跳舞。1.0一個細路仔騎緊馬。個細路仔騎緊匹馬。0.95有個男人餵老鼠畀條蛇食。個男人餵咗隻老鼠畀條蛇食。1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 4warmup_ratio: 0.1bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.7634 | 100 | 0.0549 | 0.0403 | 0.7895 | - |
| 1.5267 | 200 | 0.027 | 0.0368 | 0.7941 | - |
| 2.2901 | 300 | 0.0187 | 0.0349 | 0.7968 | - |
| 3.0534 | 400 | 0.0119 | 0.0354 | 0.8004 | - |
| 3.8168 | 500 | 0.0076 | 0.0359 | 0.7996 | - |
| 4.0 | 524 | - | - | - | 0.7605 |
Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 98
Model tree for hon9kon9ize/bert-large-cantonese-sts
Datasets used to train hon9kon9ize/bert-large-cantonese-sts
Space using hon9kon9ize/bert-large-cantonese-sts 1
Evaluation results
- Pearson Cosine on sts devself-reported0.798
- Spearman Cosine on sts devself-reported0.800
- Pearson Cosine on sts testself-reported0.764
- Spearman Cosine on sts testself-reported0.760