op_dir_full_1epoch / README.md
hoseinshr1055's picture
End of training
bc38f9d verified
metadata
library_name: transformers
language:
  - fa
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Large fa - Mobin Tadbir Sharif
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: fa
          split: None
          args: 'config: fa, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 91.65836687359301

Whisper Large fa - Mobin Tadbir Sharif

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8106
  • Wer: 91.6584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.581 0.0869 1000 2.5843 104.8093
2.2554 0.1738 2000 2.3093 111.6202
2.1214 0.2607 3000 2.1839 105.5556
2.024 0.3477 4000 2.1036 113.6312
1.9005 0.4346 5000 2.0217 135.5618
1.7344 0.5215 6000 1.8019 107.0619
1.4862 0.6084 7000 1.5560 101.7136
1.253 0.6953 8000 1.3641 106.0004
1.0361 0.7822 9000 1.1275 98.4010
0.8509 0.8692 10000 0.9458 97.6069
0.7212 0.9561 11000 0.8106 91.6584

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0