Model Card for HomeDepot-LoRA-GuideBot

This model is a fine-tuned version of Cagatayd/llama3.2-1B-Instruct-Egitim adapted with Low-Rank Adaptation (LoRA) for reasoning-guided product recommendation. It has been trained on the Ukhushn/home-depot dataset to simulate helpful responses to customer product search queries using Chain-of-Thought-style formatting with <think> annotations.


Model Details

Model Description

  • Base model: Cagatayd/llama3.2-1B-Instruct-Egitim
  • Adapter method: PEFT (LoRA)
  • Quantization: 8-bit (BitsAndBytes)
  • Tokenizer: AutoTokenizer from the same base model with padding_side="left"
  • Language(s): English
  • License: MIT (inherits from base + dataset)
  • Finetuned by: Udemy DeepSeek Fine-Tuning Notebook (Udemy_DeepSeek.ipynb)

Model Sources

  • Dataset: Ukhushn/home-depot
  • Training Notebook: Provided in the repository (Udemy_DeepSeek.ipynb)

Uses

Direct Use

  • Product search assistance for Home Depot-like catalogs.
  • Reasoning-style answers for DIY and specification-based shopping.
  • Embedded assistant in LLM playgrounds or chatbots with context-rich inputs.

Out-of-Scope Use

  • Complex multi-product comparisons without product metadata.
  • Open-domain generation or general reasoning beyond retail context.

Training Details

Training Data

  • Dataset: Ukhushn/home-depot
  • Split: 80/20 (train_test_split(seed=42))
  • Preprocessed Format: JSON-like ChatML with system/user/assistant roles using <think> tags for reasoning supervision.

Training Procedure

  • LoRA target modules: ["q_proj", "v_proj"]
  • LoRA config: r=8, lora_alpha=16, lora_dropout=0.05, bias="none"
  • TrainingArgs:
    • max_steps=60, learning_rate=2e-4, gradient_accumulation_steps=1, per_device_train_batch_size=2
    • fp16=True, save_strategy="steps", eval_steps=10, save_steps=20

Compute Environment

  • GPU: NVIDIA RTX 3060 12GB
  • Platform: WSL Ubuntu 22.04
  • Precision: fp16, 8-bit quantized base

Evaluation

Metrics

  • Training Loss: ~1.91
  • Validation Loss: ~1.88 at step 60

How to Use

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

model_name = "Cagatayd/llama3.2-1B-Instruct-Egitim"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
base_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, "./results/checkpoint-60")

prompt = "I am tiling a shower in a 5x7 ft basement bathroom. What should I consider?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
14
Safetensors
Model size
1.28B params
Tensor type
F32
FP16
I8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support