Model Card for HomeDepot-LoRA-GuideBot
This model is a fine-tuned version of Cagatayd/llama3.2-1B-Instruct-Egitim
adapted with Low-Rank Adaptation (LoRA) for reasoning-guided product recommendation. It has been trained on the Ukhushn/home-depot
dataset to simulate helpful responses to customer product search queries using Chain-of-Thought-style formatting with <think>
annotations.
Model Details
Model Description
- Base model:
Cagatayd/llama3.2-1B-Instruct-Egitim
- Adapter method: PEFT (LoRA)
- Quantization: 8-bit (BitsAndBytes)
- Tokenizer: AutoTokenizer from the same base model with
padding_side="left"
- Language(s): English
- License: MIT (inherits from base + dataset)
- Finetuned by: Udemy DeepSeek Fine-Tuning Notebook (
Udemy_DeepSeek.ipynb
)
Model Sources
- Dataset: Ukhushn/home-depot
- Training Notebook: Provided in the repository (
Udemy_DeepSeek.ipynb
)
Uses
Direct Use
- Product search assistance for Home Depot-like catalogs.
- Reasoning-style answers for DIY and specification-based shopping.
- Embedded assistant in LLM playgrounds or chatbots with context-rich inputs.
Out-of-Scope Use
- Complex multi-product comparisons without product metadata.
- Open-domain generation or general reasoning beyond retail context.
Training Details
Training Data
- Dataset:
Ukhushn/home-depot
- Split: 80/20 (
train_test_split(seed=42)
) - Preprocessed Format: JSON-like ChatML with system/user/assistant roles using
<think>
tags for reasoning supervision.
Training Procedure
- LoRA target modules:
["q_proj", "v_proj"]
- LoRA config:
r=8
,lora_alpha=16
,lora_dropout=0.05
,bias="none"
- TrainingArgs:
max_steps=60
,learning_rate=2e-4
,gradient_accumulation_steps=1
,per_device_train_batch_size=2
fp16=True
,save_strategy="steps"
,eval_steps=10
,save_steps=20
Compute Environment
- GPU: NVIDIA RTX 3060 12GB
- Platform: WSL Ubuntu 22.04
- Precision: fp16, 8-bit quantized base
Evaluation
Metrics
- Training Loss: ~1.91
- Validation Loss: ~1.88 at step 60
How to Use
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
model_name = "Cagatayd/llama3.2-1B-Instruct-Egitim"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
base_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, "./results/checkpoint-60")
prompt = "I am tiling a shower in a 5x7 ft basement bathroom. What should I consider?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support