faqsum_fine-tune_vietai_vipubmedt5-base_4epochs_v1
This model is a fine-tuned version of htdung167/VietAI_ViPubmedT5_t5x_converted on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0506
- Rouge1: 0.725
- Rouge2: 0.5785
- Rougel: 0.684
- Rougelsum: 0.6849
- Gen Len: 16.2157
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.1558 | 0.4006 | 133 | 1.1219 | 0.7022 | 0.5538 | 0.6592 | 0.6598 | 28.6471 |
1.136 | 0.8012 | 266 | 1.0128 | 0.7085 | 0.5623 | 0.6703 | 0.6706 | 25.417 |
0.8667 | 1.2018 | 399 | 1.0023 | 0.724 | 0.5806 | 0.6855 | 0.6859 | 15.9434 |
0.7045 | 1.6024 | 532 | 0.9938 | 0.7213 | 0.5804 | 0.6837 | 0.6843 | 19.3982 |
0.8247 | 2.0030 | 665 | 0.9750 | 0.727 | 0.5841 | 0.6878 | 0.6877 | 17.0151 |
0.6886 | 2.4036 | 798 | 0.9992 | 0.7242 | 0.5792 | 0.6826 | 0.6829 | 16.7345 |
0.7363 | 2.8042 | 931 | 0.9992 | 0.7234 | 0.5756 | 0.6812 | 0.6815 | 17.7134 |
0.4797 | 3.2048 | 1064 | 1.0674 | 0.7295 | 0.585 | 0.6907 | 0.6912 | 15.6961 |
0.4926 | 3.6054 | 1197 | 1.0506 | 0.725 | 0.5785 | 0.684 | 0.6849 | 16.2157 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for htdung167/faqsum_fine-tune_vietai_vipubmedt5-base_4epochs_v1
Base model
htdung167/VietAI_ViPubmedT5_t5x_converted