faqsum_fine-tune_vietai_vipubmedt5-base_4epochs_v1

This model is a fine-tuned version of htdung167/VietAI_ViPubmedT5_t5x_converted on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0506
  • Rouge1: 0.725
  • Rouge2: 0.5785
  • Rougel: 0.684
  • Rougelsum: 0.6849
  • Gen Len: 16.2157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1558 0.4006 133 1.1219 0.7022 0.5538 0.6592 0.6598 28.6471
1.136 0.8012 266 1.0128 0.7085 0.5623 0.6703 0.6706 25.417
0.8667 1.2018 399 1.0023 0.724 0.5806 0.6855 0.6859 15.9434
0.7045 1.6024 532 0.9938 0.7213 0.5804 0.6837 0.6843 19.3982
0.8247 2.0030 665 0.9750 0.727 0.5841 0.6878 0.6877 17.0151
0.6886 2.4036 798 0.9992 0.7242 0.5792 0.6826 0.6829 16.7345
0.7363 2.8042 931 0.9992 0.7234 0.5756 0.6812 0.6815 17.7134
0.4797 3.2048 1064 1.0674 0.7295 0.585 0.6907 0.6912 15.6961
0.4926 3.6054 1197 1.0506 0.725 0.5785 0.684 0.6849 16.2157

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
30
Safetensors
Model size
226M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for htdung167/faqsum_fine-tune_vietai_vipubmedt5-base_4epochs_v1

Finetuned
(1)
this model