|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- deepseek-ai/DeepSeek-V3 |
|
library_name: transformers |
|
tags: |
|
- DeepSeek |
|
- abliterated |
|
- uncensored |
|
--- |
|
|
|
# huihui-ai/DeepSeek-V3-abliterated |
|
|
|
|
|
This is an uncensored version of [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). |
|
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. |
|
|
|
# Note |
|
|
|
All files have been uploaded. If you have already downloaded it before, please download again to automatically get any missing files. |
|
|
|
``` |
|
huggingface-cli download huihui-ai/DeepSeek-V3-abliterated --local-dir ./huihui-ai/DeepSeek-V3-abliterated --token hf_xxxx |
|
``` |
|
|
|
The next goal is [deepseek-ai/DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324). |
|
|
|
## Use with ollama |
|
|
|
You can use [huihui_ai/deepseek-v3-abliterated](https://ollama.com/huihui_ai/deepseek-v3-abliterated) directly |
|
``` |
|
ollama run huihui_ai/deepseek-v3-abliterated |
|
``` |
|
|
|
[Q4_K_M](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-q4_K_M), |
|
[Q3_K_M](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-Q3_K_M), |
|
[Q2_K](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-Q2_K) have been uploaded. |
|
|
|
## Use with transformers |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer |
|
import torch |
|
import os |
|
import signal |
|
|
|
cpu_count = os.cpu_count() |
|
print(f"Number of CPU cores in the system: {cpu_count}") |
|
half_cpu_count = cpu_count // 2 |
|
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count) |
|
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count) |
|
torch.set_num_threads(half_cpu_count) |
|
|
|
print(f"PyTorch threads: {torch.get_num_threads()}") |
|
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}") |
|
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}") |
|
|
|
NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-abliterated" |
|
print(f"Load Model {NEW_MODEL_ID} ... ") |
|
quant_config_4 = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
) |
|
|
|
# Single RTX 4090 |
|
NUM_TRANS_LAYERS = 61 |
|
|
|
def create_device_map(): |
|
device_map = { |
|
'model.embed_tokens': 0, |
|
'model.norm': 0, |
|
'model.rotary_emb': 0, |
|
'lm_head': 0 |
|
} |
|
for start, end, gpu_id in [(0, 5, 0)]: |
|
for i in range(start, end): |
|
device_map[f'model.layers.{i}'] = gpu_id |
|
|
|
for i in range(5, NUM_TRANS_LAYERS): |
|
device_map[f'model.layers.{i}'] = "cpu" |
|
|
|
return device_map |
|
|
|
device_map = create_device_map() |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
NEW_MODEL_ID, |
|
device_map=device_map, |
|
trust_remote_code=True, |
|
quantization_config=quant_config_4, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
initial_messages = [{"role": "system", "content": "You are a helpful assistant."}] |
|
messages = initial_messages.copy() |
|
|
|
class CustomTextStreamer(TextStreamer): |
|
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): |
|
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) |
|
self.generated_text = "" |
|
self.stop_flag = False |
|
|
|
def on_finalized_text(self, text: str, stream_end: bool = False): |
|
self.generated_text += text |
|
print(text, end="", flush=True) |
|
if self.stop_flag: |
|
raise StopIteration |
|
|
|
def stop_generation(self): |
|
self.stop_flag = True |
|
|
|
def generate_stream(model, tokenizer, messages, max_new_tokens): |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.long) |
|
tokens = input_ids.to(model.device) |
|
attention_mask = attention_mask.to(model.device) |
|
|
|
streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
def signal_handler(sig, frame): |
|
streamer.stop_generation() |
|
print("\n[Generation stopped by user with Ctrl+C]") |
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
|
|
print("Response: ", end="", flush=True) |
|
try: |
|
generated_ids = model.generate( |
|
tokens, |
|
attention_mask=attention_mask, |
|
use_cache=False, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
streamer=streamer |
|
) |
|
del generated_ids |
|
except StopIteration: |
|
print("\n[Stopped by user]") |
|
|
|
del input_ids, attention_mask |
|
torch.cuda.empty_cache() |
|
signal.signal(signal.SIGINT, signal.SIG_DFL) |
|
|
|
return streamer.generated_text, streamer.stop_flag |
|
|
|
while True: |
|
user_input = input("User: ").strip() |
|
if user_input.lower() == "/exit": |
|
print("Exiting chat.") |
|
break |
|
if user_input.lower() == "/clear": |
|
messages = initial_messages.copy() |
|
print("Chat history cleared. Starting a new conversation.") |
|
continue |
|
if not user_input: |
|
print("Input cannot be empty. Please enter something.") |
|
continue |
|
messages.append({"role": "user", "content": user_input}) |
|
response, stop_flag = generate_stream(model, tokenizer, messages, 8192) |
|
if stop_flag: |
|
continue |
|
messages.append({"role": "assistant", "content": response}) |
|
|
|
``` |
|
### Donation |
|
|
|
If you like it, please click 'like' and follow us for more updates. |
|
You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. |
|
|
|
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. |
|
- bitcoin(BTC): |
|
``` |
|
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge |
|
``` |
|
|