|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- huihui-ai/Qwen3-8B-abliterated |
|
- mlabonne/Qwen3-8B-abliterated |
|
- Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1 |
|
- soob3123/GrayLine-Qwen3-8B |
|
library_name: transformers |
|
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
tags: |
|
- moe |
|
extra_gated_prompt: >- |
|
**Usage Warnings** |
|
|
|
|
|
“**Risk of Sensitive or Controversial Outputs**“: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs. |
|
|
|
“**Not Suitable for All Audiences**:“ Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security. |
|
|
|
“**Legal and Ethical Responsibilities**“: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences. |
|
|
|
“**Research and Experimental Use**“: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications. |
|
|
|
“**Monitoring and Review Recommendations**“: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content. |
|
|
|
“**No Default Safety Guarantees**“: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use. |
|
|
|
--- |
|
# huihui-ai/Huihui-MoE-24B-A8B-abliterated |
|
|
|
## Model Overview |
|
Huihui-MoE-24B-A8B-abliterated is a **Mixture of Experts (MoE)** language model developed by **huihui.ai**, built upon the **[huihui-ai/Qwen3-8B-abliterated](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated)** base model. It enhances the standard Transformer architecture by replacing MLP layers with MoE layers, each containing 4 experts, to achieve high performance with efficient inference. The model is designed for natural language processing tasks, including text generation, question answering, and conversational applications. |
|
|
|
This model combines four ablated models, and perhaps it can achieve the performance of all the ablated models? |
|
|
|
This is just a test. The exploration of merging different manifestations of models of the same type is another possibility. |
|
|
|
- **Architecture**: Qwen3MoeForCausalLM model with 4 experts per layer (num_experts=4), activating 1 expert per token (num_experts_per_tok=1). |
|
- **Total Parameters**: ~24 billion (24B) |
|
- **Activated Parameters**: ~8 billion (8B) during inference, comparable to Qwen3-8B-abliterated |
|
- **Developer**: huihui.ai |
|
- **Release Date**: June 2025 |
|
- **License**: Inherits the license of the Qwen3 base model (apache-2.0) |
|
|
|
## Expert Models: |
|
|
|
### Expert 1: |
|
[mlabonne/Qwen3-8B-abliterated](https://huggingface.co/mlabonne/Qwen3-8B-abliterated) |
|
|
|
### Expert 2: |
|
[Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1) |
|
|
|
### Expert 3: |
|
[huihui-ai/Qwen3-8B-abliterated](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) |
|
|
|
### Expert 4: |
|
[soob3123/GrayLine-Qwen3-8B](https://huggingface.co/soob3123/GrayLine-Qwen3-8B) |
|
|
|
### Instruction Following: |
|
[huihui-ai/Qwen3-8B-abliterated](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated) |
|
|
|
## Training |
|
|
|
- **Base Model**: Qwen3-8B-abliterated |
|
- **Conversion**: The model copies embeddings, self-attention, and normalization weights from Qwen3-8B-abliterated, replacing MLP layers with MoE layers (4 experts). Gating weights are randomly initialized. |
|
- **Fine-Tuning**: Not fine-tuned; users are recommended to fine-tune for specific tasks to optimize expert routing. |
|
|
|
## ollama |
|
|
|
You can use [huihui_ai/huihui-moe-abliterated:24b](https://ollama.com/huihui_ai/huihui-moe-abliterated:24b) directly, |
|
Switch the thinking toggle using /set think and /set nothink |
|
``` |
|
ollama run huihui_ai/huihui-moe-abliterated:24b |
|
``` |
|
|
|
## Usage |
|
|
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer |
|
import torch |
|
import os |
|
import signal |
|
import random |
|
import numpy as np |
|
import time |
|
from collections import Counter |
|
|
|
cpu_count = os.cpu_count() |
|
print(f"Number of CPU cores in the system: {cpu_count}") |
|
half_cpu_count = cpu_count // 2 |
|
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count) |
|
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count) |
|
torch.set_num_threads(half_cpu_count) |
|
|
|
print(f"PyTorch threads: {torch.get_num_threads()}") |
|
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}") |
|
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}") |
|
|
|
# Load the model and tokenizer |
|
NEW_MODEL_ID = "huihui-ai/Huihui-MoE-24B-A8B-abliterated" |
|
print(f"Load Model {NEW_MODEL_ID} ... ") |
|
quant_config_4 = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
NEW_MODEL_ID, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
#quantization_config=quant_config_4, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
messages = [] |
|
nothink = False |
|
same_seed = False |
|
skip_prompt=True |
|
skip_special_tokens=True |
|
do_sample = True |
|
|
|
def set_random_seed(seed=None): |
|
"""Set random seed for reproducibility. If seed is None, use int(time.time()).""" |
|
if seed is None: |
|
seed = int(time.time()) # Convert float to int |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) # If using CUDA |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
return seed # Return seed for logging if needed |
|
|
|
class CustomTextStreamer(TextStreamer): |
|
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): |
|
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) |
|
self.generated_text = "" |
|
self.stop_flag = False |
|
self.init_time = time.time() # Record initialization time |
|
self.end_time = None # To store end time |
|
self.first_token_time = None # To store first token generation time |
|
self.token_count = 0 # To track total tokens |
|
|
|
def on_finalized_text(self, text: str, stream_end: bool = False): |
|
if self.first_token_time is None and text.strip(): # Set first token time on first non-empty text |
|
self.first_token_time = time.time() |
|
self.generated_text += text |
|
# Count tokens in the generated text |
|
tokens = self.tokenizer.encode(text, add_special_tokens=False) |
|
self.token_count += len(tokens) |
|
print(text, end="", flush=True) |
|
if stream_end: |
|
self.end_time = time.time() # Record end time when streaming ends |
|
if self.stop_flag: |
|
raise StopIteration |
|
|
|
def stop_generation(self): |
|
self.stop_flag = True |
|
self.end_time = time.time() # Record end time when generation is stopped |
|
|
|
def get_metrics(self): |
|
"""Returns initialization time, first token time, first token latency, end time, total time, total tokens, and tokens per second.""" |
|
if self.end_time is None: |
|
self.end_time = time.time() # Set end time if not already set |
|
total_time = self.end_time - self.init_time # Total time from init to end |
|
tokens_per_second = self.token_count / total_time if total_time > 0 else 0 |
|
first_token_latency = (self.first_token_time - self.init_time) if self.first_token_time is not None else None |
|
metrics = { |
|
"init_time": self.init_time, |
|
"first_token_time": self.first_token_time, |
|
"first_token_latency": first_token_latency, |
|
"end_time": self.end_time, |
|
"total_time": total_time, # Total time in seconds |
|
"total_tokens": self.token_count, |
|
"tokens_per_second": tokens_per_second |
|
} |
|
return metrics |
|
|
|
def generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, max_new_tokens): |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
enable_thinking = not nothink, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.long) |
|
tokens = input_ids.to(model.device) |
|
attention_mask = attention_mask.to(model.device) |
|
|
|
streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) |
|
|
|
def signal_handler(sig, frame): |
|
streamer.stop_generation() |
|
print("\n[Generation stopped by user with Ctrl+C]") |
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
|
|
generate_kwargs = {} |
|
if do_sample: |
|
generate_kwargs = { |
|
"do_sample": do_sample, |
|
"max_length": max_new_tokens, |
|
"temperature": 0.6, |
|
"top_k": 20, |
|
"top_p": 0.95, |
|
"repetition_penalty": 1.2, |
|
"no_repeat_ngram_size": 2 |
|
} |
|
else: |
|
generate_kwargs = { |
|
"do_sample": do_sample, |
|
"max_length": max_new_tokens, |
|
"repetition_penalty": 1.2, |
|
"no_repeat_ngram_size": 2 |
|
} |
|
|
|
|
|
print("Response: ", end="", flush=True) |
|
try: |
|
generated_ids = model.generate( |
|
tokens, |
|
attention_mask=attention_mask, |
|
#use_cache=False, |
|
pad_token_id=tokenizer.pad_token_id, |
|
streamer=streamer, |
|
**generate_kwargs |
|
) |
|
del generated_ids |
|
except StopIteration: |
|
print("\n[Stopped by user]") |
|
|
|
del input_ids, attention_mask |
|
torch.cuda.empty_cache() |
|
signal.signal(signal.SIGINT, signal.SIG_DFL) |
|
|
|
return streamer.generated_text, streamer.stop_flag, streamer.get_metrics() |
|
|
|
init_seed = set_random_seed() |
|
|
|
# List to store activated expert indices |
|
activated_experts = [] |
|
|
|
# Define hook function to capture gate_probs output |
|
def hook_fn(module, input, output): |
|
# output is gate_probs, shape: [batch_size, sequence_length, num_experts] |
|
gate_probs = output |
|
# Compute top-1 expert indices (since only one expert is activated) |
|
_, topk_indices = gate_probs.topk(1, dim=-1) # Take top-1 |
|
# Flatten and store activated expert indices |
|
activated_experts.extend(topk_indices.squeeze(-1).view(-1).cpu().tolist()) |
|
|
|
hooks = [] |
|
for layer in model.model.layers: |
|
hooks.append(layer.mlp.gate.register_forward_hook(hook_fn)) |
|
|
|
while True: |
|
if same_seed: |
|
set_random_seed(init_seed) |
|
else: |
|
init_seed = set_random_seed() |
|
|
|
print(f"\nnothink: {nothink}") |
|
print(f"skip_prompt: {skip_prompt}") |
|
print(f"skip_special_tokens: {skip_special_tokens}") |
|
print(f"do_sample: {do_sample}") |
|
print(f"same_seed: {same_seed}, {init_seed}\n") |
|
|
|
user_input = input("User: ").strip() |
|
if user_input.lower() == "/exit": |
|
print("Exiting chat.") |
|
break |
|
if user_input.lower() == "/clear": |
|
messages = [] |
|
print("Chat history cleared. Starting a new conversation.") |
|
continue |
|
if user_input.lower() == "/nothink": |
|
nothink = not nothink |
|
continue |
|
if user_input.lower() == "/skip_prompt": |
|
skip_prompt = not skip_prompt |
|
continue |
|
if user_input.lower() == "/skip_special_tokens": |
|
skip_special_tokens = not skip_special_tokens |
|
continue |
|
if user_input.lower().startswith("/same_seed"): |
|
parts = user_input.split() |
|
if len(parts) == 1: # /same_seed (no number) |
|
same_seed = not same_seed # Toggle switch |
|
elif len(parts) == 2: # /same_seed <number> |
|
try: |
|
init_seed = int(parts[1]) # Extract and convert number to int |
|
same_seed = True |
|
except ValueError: |
|
print("Error: Please provide a valid integer after /same_seed") |
|
continue |
|
if user_input.lower() == "/do_sample": |
|
do_sample = not do_sample |
|
continue |
|
if not user_input: |
|
print("Input cannot be empty. Please enter something.") |
|
continue |
|
|
|
|
|
messages.append({"role": "user", "content": user_input}) |
|
activated_experts = [] |
|
response, stop_flag, metrics = generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, 40960) |
|
print("\n\nMetrics:") |
|
for key, value in metrics.items(): |
|
print(f" {key}: {value}") |
|
|
|
# Count the frequency of each activated expert |
|
expert_counts = Counter(activated_experts) |
|
|
|
# Print activation statistics |
|
print("\nActivated Expert Statistics:") |
|
for expert_idx, count in sorted(expert_counts.items()): |
|
print(f"Expert {expert_idx}: {count} times") |
|
|
|
print("", flush=True) |
|
if stop_flag: |
|
continue |
|
messages.append({"role": "assistant", "content": response}) |
|
|
|
# Remove all hooks after inference |
|
for h in hooks: h.remove() |
|
|
|
``` |
|
|
|
## Applications |
|
|
|
- **Text Generation: Articles**, dialogues, and creative writing. |
|
- **Question Answering**: Information retrieval and query resolution. |
|
- **Conversational AI**: Multi-turn dialogues for chatbots. |
|
- **Research**: Exploration of MoE architectures and efficient model scaling. |
|
|
|
## Limitations |
|
|
|
- **Fine-Tuning Required**: Randomly initialized gating weights may lead to suboptimal expert utilization without fine-tuning. |
|
- **Compatibility**: Developed with transformers 4.52.4; ensure matching versions to avoid loading issues. |
|
- **Inference Speed**: While efficient for an MoE model, performance depends on hardware (GPU recommended). |
|
|
|
## Ethical Considerations |
|
|
|
- **Bias**: Inherits potential biases from the Qwen3-8B-abliterated base model; users should evaluate outputs for fairness. |
|
- **Usage**: Intended for research and responsible applications; avoid generating harmful or misleading content. |
|
|
|
## Contact |
|
|
|
- **Developer**: huihui.ai |
|
- **Repository**: huihui-ai/Huihui-MoE-24B-A8B-abliterated (available locally or on Hugging Face) |
|
- **Issues**: Report bugs or request features via the repository or please send an email to [email protected] |
|
|
|
|