|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/LICENSE
|
|
language:
|
|
- zho
|
|
- eng
|
|
- fra
|
|
- spa
|
|
- por
|
|
- deu
|
|
- ita
|
|
- rus
|
|
- jpn
|
|
- kor
|
|
- vie
|
|
- tha
|
|
- ara
|
|
pipeline_tag: text-generation
|
|
base_model: Qwen/Qwen2.5-7B-Instruct
|
|
tags:
|
|
- chat
|
|
- abliterated
|
|
- uncensored
|
|
---
|
|
|
|
# huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3
|
|
|
|
|
|
This is an uncensored version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
|
|
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
|
|
The test results are not very good, but compared to before, there is much less [garbled text](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2/discussions/2).
|
|
|
|
## ollama
|
|
|
|
You can use [huihui_ai/qwen2.5-abliterate](https://ollama.com/huihui_ai/qwen2.5-abliterate) directly,
|
|
```
|
|
ollama run huihui_ai/qwen2.5-abliterate
|
|
```
|
|
|
|
## Usage
|
|
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
|
|
|
|
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
# Load the model and tokenizer
|
|
model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3"
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
torch_dtype="auto",
|
|
device_map="auto"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
# Initialize conversation context
|
|
initial_messages = [
|
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
|
|
]
|
|
messages = initial_messages.copy() # Copy the initial conversation context
|
|
|
|
# Enter conversation loop
|
|
while True:
|
|
# Get user input
|
|
user_input = input("User: ").strip() # Strip leading and trailing spaces
|
|
|
|
# If the user types '/exit', end the conversation
|
|
if user_input.lower() == "/exit":
|
|
print("Exiting chat.")
|
|
break
|
|
|
|
# If the user types '/clean', reset the conversation context
|
|
if user_input.lower() == "/clean":
|
|
messages = initial_messages.copy() # Reset conversation context
|
|
print("Chat history cleared. Starting a new conversation.")
|
|
continue
|
|
|
|
# If input is empty, prompt the user and continue
|
|
if not user_input:
|
|
print("Input cannot be empty. Please enter something.")
|
|
continue
|
|
|
|
# Add user input to the conversation
|
|
messages.append({"role": "user", "content": user_input})
|
|
|
|
# Build the chat template
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
|
|
# Tokenize input and prepare it for the model
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
|
|
# Generate a response from the model
|
|
generated_ids = model.generate(
|
|
**model_inputs,
|
|
max_new_tokens=8192
|
|
)
|
|
|
|
# Extract model output, removing special tokens
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
# Add the model's response to the conversation
|
|
messages.append({"role": "assistant", "content": response})
|
|
|
|
# Print the model's response
|
|
print(f"Qwen: {response}")
|
|
|
|
```
|
|
|
|
## Evaluations
|
|
The following data has been re-evaluated and calculated as the average for each test.
|
|
|
|
| Benchmark | Qwen2.5-7B-Instruct | Qwen2.5-7B-Instruct-abliterated-v3 | Qwen2.5-7B-Instruct-abliterated-v2 | Qwen2.5-7B-Instruct-abliterated |
|
|
|-------------|---------------------|------------------------------------|------------------------------------|---------------------------------|
|
|
| IF_Eval | 76.44 | 72.64 | **77.82** | 76.49 |
|
|
| MMLU Pro | **43.12** | 39.14 | 42.03 | 41.71 |
|
|
| TruthfulQA | 62.46 | 57.27 | 57.81 | **64.92** |
|
|
| BBH | **53.92** | 50.67 | 53.01 | 52.77 |
|
|
| GPQA | 31.91 | 31.65 | **32.17** | 31.97 |
|
|
|
|
The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/eval.sh)
|
|
|