qm_sum_t5-base
This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2091
- Rouge1: 0.2135
- Rouge2: 0.0626
- Rougel: 0.1688
- Rougelsum: 0.1689
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 79 | 3.2969 | 0.2065 | 0.0591 | 0.1623 | 0.1621 | 18.9926 |
No log | 2.0 | 158 | 3.2175 | 0.2173 | 0.067 | 0.1725 | 0.1725 | 19.0 |
No log | 3.0 | 237 | 3.1909 | 0.2149 | 0.064 | 0.1716 | 0.1718 | 19.0 |
No log | 4.0 | 316 | 3.2091 | 0.2135 | 0.0626 | 0.1688 | 0.1689 | 19.0 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support