You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer based on vinai/phobert-base-v2

This is a sentence-transformers model finetuned from vinai/phobert-base-v2 on the wiki-data dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: vinai/phobert-base-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("iambestfeed/phobert-base-v2-wiki-data-filter_fasttext_0.6_wseg-lr2e-05-1-epochs-bs-48")
# Run inference
sentences = [
    'Giao_hữu trước mùa giải của Manchester_United F.C. mùa giải 2018 – 19',
    'United chuẩn_bị cho mùa giải 2018 – 19 với một tour thi_đấu tại Hoa_Kỳ . Ba trận đấu đầu_tiên được công_bố vào ngày 3 tháng 4 năm 2018 , với các đối_thủ Club_América , San_Jose_Earthquakes and Liverpool . ( ) Câu_lạc_bộ sau đó thông_báo tham_dự International_Champions_Cup 2018 . ( ) Ở giải đấu năm 2018 , United đấu với Milan tại StubHub_Center ở Carson , California , Liverpool tại Sân_vận_động Michigan ở Ann_Arbor , Michigan , và Real_Madrid tại Sân_vận_động Hard_Rock ở Miami_Gardens , Florida . ( ) Alexis_Sánchez đến Hoa_Kỳ bị trì_hoãn vì anh không được cung_cấp visa vì bản_án treo 16 tháng mà anh đã chấp_nhận vào tháng 2 do trốn lậu thuế trong thời_gian anh ở Tây_Ban_Nha . ( ) Trận giao_hữu cuối_cùng trước mùa giải của Manchester_United là trận đấu trên sân_khách trước Bayern_Munich tại Allianz_Arena vào ngày 5 tháng 8 . ( )',
    'USS Young ( DD-580 ) là một tàu_khu_trục lớp Fletcher được Hải_quân Hoa_Kỳ chế_tạo trong Chiến_tranh Thế_giới thứ hai . Nó là chiếc tàu_chiến thứ hai của Hải_quân Mỹ mang cái tên này , và là chiếc duy_nhất được đặt theo tên Chuẩn đô_đốc Lucien_Young ( 1852-1912 ) , người tham_gia cuộc Chiến_tranh Tây_Ban Nha-Hoa Kỳ . Nó hoạt_động cho đến hết Thế_Chiến II , được cho xuất_biên chế năm 1947 , xuất đăng_bạ năm 1968 và cuối_cùng bị đánh chìm như một mục_tiêu năm 1970 . Nó được tặng_thưởng năm Ngôi_sao Chiến_trận do thành_tích phục_vụ trong Thế_Chiến II .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

wiki-data

  • Dataset: wiki-data at 4567021
  • Size: 1,659,403 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 10.08 tokens
    • max: 25 tokens
    • min: 15 tokens
    • mean: 99.66 tokens
    • max: 256 tokens
  • Samples:
    anchor positive
    Tiểu_sử của Hàm_Phong Hàm_Phong_Đế tên thật là Ái_Tân_Giác_La Dịch_Trữ ( 爱新觉罗 · 奕詝 ) , sinh ngày 9 tháng 6 năm Đạo_Quang thứ 11 ( tức ngày 17 tháng 7 , năm 1831 ) tại Viên Minh_Viên ở Bắc_Kinh . Ông là con trai thứ tư của Thanh_Tuyên_Tông_Đạo Quang_Đế , mẹ là Hiếu_Toàn_Thành_Hoàng hậu Nữu_Hỗ_Lộc thị , Hoàng_hậu thứ hai của Đạo_Quang , con gái Nhị đẳng Thị_vệ Di_Linh , gia_thế không hiển_hách nhưng nhan_sắc mĩ mạo , được Đạo_Quang_Đế sủng_ái nên nhanh_chóng được tấn_phong . Khi Dịch_Trữ được ra_đời thì bà còn là Toàn Quý_phi . Theo thứ_tự thì Dịch_Trữ là Hoàng tứ tử , nhưng lại là con trai lớn nhất của Đạo_Quang_Đế vì cùng năm đó Hoàng trưởng tử Dịch_Vĩ mắc bệnh qua_đời ở tuổi 23 , Hoàng nhị tử Dịch_Cương và Hoàng tam tử Dịch_Kế lại mất sớm . Toàn Quý_phi sinh con được 2 năm thì Hiếu_Thận_Thành_Hoàng hậu Đông_Giai thị qua_đời nên bà được sách phong Hoàng quý_phi . Năm Đạo_Quang thứ 14 ( 1834 ) , Hoàng quý_phi được lập làm Kế hậu . Vì mẹ làm Hoàng_hậu , Hoàng tứ tử Dịch_Trữ nghiễm_nhiên trở_thành [ Đích tử ] ...
    Giới_thiệu của Eristalis bastardii Eristalis bastardii là một loài ruồi trong họ Ruồi giả ong ( Syrphidae ) . Loài này được Macquart mô_tả khoa_học đầu_tiên năm 1842 . Eristalis bastardii phân_bố ở miền Tân_bắc ( ) ( )
    Lịch_sử thuật_ngữ tẩy_chay của Tẩy_chay Trong tiếng Anh , tẩy_chay được biết đến với từ " boycott " , từ này cũng như toàn_bộ ý_nghĩa của nó ra_đời trong thời_kỳ " chiến_tranh đất_đai " tại Anh vào nữa sau thế_kỷ XIX . Boycott vốn là tên của một chủ đất - Charles_Cunning_Boycott - người Anh tại thị_trấn Mayo , hạt Mayo , Ireland . Những tá_điền Ireland bất_bình vì số tiền thuê đất quá cao mà điền_chủ đặt ra . Vì_thế năm 1880 , họ thành_lập một tổ_chức gọi là Liên_đoàn Đất_đai , và phong_trào nhanh_chóng đã lan nhanh trong toàn_quốc . Quá_trình đó đã sản_sinh ra chiến_thuật mới và trở_thành yếu_tố chính cho những tổ_chức bất_bạo_động qua nhiều thế_kỷ . Một trong những mục_tiêu đầu_tiên và tai_tiếng nhất là_viên quản_lý điền_trang người Anh ở thị_trấn Mayo . Liên_đoàn Đất_đai yêu_cầu ông ta giảm_giá thuê đất vì mùa_vụ thất_bát . Không_những không hoà_giải , ông ta còn đưa cảnh_sát đến đuổi những người tá_điền . Liên_đoàn Đất_đai phản_ứng theo cách mà sau đó trở_thành một_cách cư_xử trên thế_giới . Những cư_dân địa_phương từ_ch...
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 48
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_fasttext_0.6_wseg-lr2e-05-1-epochs-bs-48
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: iambestfeed/phobert-base-v2-wiki-data-filter_fasttext_0.6_wseg-lr2e-05-1-epochs-bs-48
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0006 10 3.232
0.0012 20 3.296
0.0017 30 3.1884
0.0023 40 2.9286
0.0029 50 2.7017
0.0035 60 2.4331
0.0040 70 2.2524
0.0046 80 2.025
0.0052 90 1.857
0.0058 100 1.7118
0.0064 110 1.5546
0.0069 120 1.3802
0.0075 130 1.1712
0.0081 140 1.0374
0.0087 150 0.8431
0.0093 160 0.6916
0.0098 170 0.5552
0.0104 180 0.4548
0.0110 190 0.3868
0.0116 200 0.3341
0.0121 210 0.3351
0.0127 220 0.2555
0.0133 230 0.2493
0.0139 240 0.2314
0.0145 250 0.2261
0.0150 260 0.1939
0.0156 270 0.1949
0.0162 280 0.177
0.0168 290 0.1625
0.0174 300 0.1407
0.0179 310 0.1451
0.0185 320 0.1206
0.0191 330 0.1439
0.0197 340 0.1376
0.0202 350 0.1066
0.0208 360 0.1094
0.0214 370 0.1275
0.0220 380 0.125
0.0226 390 0.1138
0.0231 400 0.1185
0.0237 410 0.093
0.0243 420 0.1091
0.0249 430 0.1053
0.0255 440 0.0853
0.0260 450 0.1058
0.0266 460 0.0911
0.0272 470 0.0686
0.0278 480 0.0725
0.0283 490 0.0889
0.0289 500 0.0747
0.0295 510 0.0929
0.0301 520 0.0886
0.0307 530 0.067
0.0312 540 0.0733
0.0318 550 0.0746
0.0324 560 0.0688
0.0330 570 0.0576
0.0336 580 0.0678
0.0341 590 0.0662
0.0347 600 0.0779
0.0353 610 0.06
0.0359 620 0.0793
0.0364 630 0.0696
0.0370 640 0.0573
0.0376 650 0.0459
0.0382 660 0.0584
0.0388 670 0.0657
0.0393 680 0.0678
0.0399 690 0.0771
0.0405 700 0.0522
0.0411 710 0.0786
0.0417 720 0.0757
0.0422 730 0.0742
0.0428 740 0.0616
0.0434 750 0.0548
0.0440 760 0.0417
0.0445 770 0.071
0.0451 780 0.0724
0.0457 790 0.0548
0.0463 800 0.0586
0.0469 810 0.0447
0.0474 820 0.0612
0.0480 830 0.0539
0.0486 840 0.064
0.0492 850 0.0636
0.0498 860 0.0478
0.0503 870 0.0584
0.0509 880 0.0592
0.0515 890 0.0437
0.0521 900 0.0604
0.0526 910 0.0595
0.0532 920 0.0439
0.0538 930 0.0626
0.0544 940 0.0457
0.0550 950 0.0316
0.0555 960 0.03
0.0561 970 0.0401
0.0567 980 0.0632
0.0573 990 0.049
0.0579 1000 0.0459
0.0584 1010 0.0619
0.0590 1020 0.0566
0.0596 1030 0.0387
0.0602 1040 0.049
0.0607 1050 0.0439
0.0613 1060 0.0362
0.0619 1070 0.0344
0.0625 1080 0.0378
0.0631 1090 0.0474
0.0636 1100 0.0452
0.0642 1110 0.0383
0.0648 1120 0.0259
0.0654 1130 0.0324
0.0660 1140 0.0561
0.0665 1150 0.0365
0.0671 1160 0.0356
0.0677 1170 0.0559
0.0683 1180 0.0404
0.0688 1190 0.0343
0.0694 1200 0.0514
0.0700 1210 0.0518
0.0706 1220 0.0441
0.0712 1230 0.0312
0.0717 1240 0.0356
0.0723 1250 0.0378
0.0729 1260 0.0426
0.0735 1270 0.0611
0.0741 1280 0.0477
0.0746 1290 0.0413
0.0752 1300 0.0449
0.0758 1310 0.0348
0.0764 1320 0.0515
0.0769 1330 0.0387
0.0775 1340 0.0359
0.0781 1350 0.0425
0.0787 1360 0.0285
0.0793 1370 0.0444
0.0798 1380 0.0239
0.0804 1390 0.0285
0.0810 1400 0.0254
0.0816 1410 0.0455
0.0822 1420 0.0346
0.0827 1430 0.0251
0.0833 1440 0.0308
0.0839 1450 0.0291
0.0845 1460 0.037
0.0850 1470 0.0458
0.0856 1480 0.0328
0.0862 1490 0.0403
0.0868 1500 0.0314
0.0874 1510 0.0261
0.0879 1520 0.0498
0.0885 1530 0.047
0.0891 1540 0.04
0.0897 1550 0.0366
0.0903 1560 0.0358
0.0908 1570 0.0344
0.0914 1580 0.0456
0.0920 1590 0.0395
0.0926 1600 0.0352
0.0931 1610 0.03
0.0937 1620 0.02
0.0943 1630 0.0256
0.0949 1640 0.035
0.0955 1650 0.0318
0.0960 1660 0.0322
0.0966 1670 0.0319
0.0972 1680 0.0317
0.0978 1690 0.0409
0.0984 1700 0.0487
0.0989 1710 0.0306
0.0995 1720 0.0319
0.1001 1730 0.0392
0.1007 1740 0.0427
0.1012 1750 0.0393
0.1018 1760 0.0183
0.1024 1770 0.0337
0.1030 1780 0.0269
0.1036 1790 0.0305
0.1041 1800 0.0379
0.1047 1810 0.0411
0.1053 1820 0.0351
0.1059 1830 0.039
0.1065 1840 0.0196
0.1070 1850 0.0427
0.1076 1860 0.0358
0.1082 1870 0.0328
0.1088 1880 0.0316
0.1093 1890 0.0268
0.1099 1900 0.0254
0.1105 1910 0.0262
0.1111 1920 0.0317
0.1117 1930 0.0284
0.1122 1940 0.0273
0.1128 1950 0.0382
0.1134 1960 0.0285
0.1140 1970 0.028
0.1146 1980 0.0298
0.1151 1990 0.0336
0.1157 2000 0.029
0.1163 2010 0.0332
0.1169 2020 0.0338
0.1174 2030 0.043
0.1180 2040 0.0341
0.1186 2050 0.0376
0.1192 2060 0.0326
0.1198 2070 0.0452
0.1203 2080 0.0262
0.1209 2090 0.017
0.1215 2100 0.0275
0.1221 2110 0.0275
0.1226 2120 0.0341
0.1232 2130 0.0292
0.1238 2140 0.0445
0.1244 2150 0.0241
0.1250 2160 0.0296
0.1255 2170 0.021
0.1261 2180 0.0189
0.1267 2190 0.035
0.1273 2200 0.0341
0.1279 2210 0.0346
0.1284 2220 0.0331
0.1290 2230 0.0473
0.1296 2240 0.0277
0.1302 2250 0.0374
0.1307 2260 0.026
0.1313 2270 0.0257
0.1319 2280 0.0389
0.1325 2290 0.0307
0.1331 2300 0.0268
0.1336 2310 0.0245
0.1342 2320 0.0235
0.1348 2330 0.034
0.1354 2340 0.028
0.1360 2350 0.0433
0.1365 2360 0.0302
0.1371 2370 0.0244
0.1377 2380 0.0304
0.1383 2390 0.0229
0.1388 2400 0.0239
0.1394 2410 0.033
0.1400 2420 0.0215
0.1406 2430 0.0201
0.1412 2440 0.02
0.1417 2450 0.024
0.1423 2460 0.0316
0.1429 2470 0.0326
0.1435 2480 0.0196
0.1441 2490 0.0184
0.1446 2500 0.0233
0.1452 2510 0.0227
0.1458 2520 0.0181
0.1464 2530 0.0349
0.1469 2540 0.0221
0.1475 2550 0.025
0.1481 2560 0.0293
0.1487 2570 0.0211
0.1493 2580 0.0204
0.1498 2590 0.0246
0.1504 2600 0.0266
0.1510 2610 0.0189
0.1516 2620 0.0156
0.1522 2630 0.0229
0.1527 2640 0.0335
0.1533 2650 0.0349
0.1539 2660 0.0226
0.1545 2670 0.0325
0.1550 2680 0.0238
0.1556 2690 0.0158
0.1562 2700 0.025
0.1568 2710 0.0241
0.1574 2720 0.0192
0.1579 2730 0.022
0.1585 2740 0.0198
0.1591 2750 0.0227
0.1597 2760 0.0329
0.1603 2770 0.0205
0.1608 2780 0.0264
0.1614 2790 0.0216
0.1620 2800 0.0327
0.1626 2810 0.0163
0.1631 2820 0.027
0.1637 2830 0.0191
0.1643 2840 0.0183
0.1649 2850 0.0161
0.1655 2860 0.0213
0.1660 2870 0.015
0.1666 2880 0.0191
0.1672 2890 0.0446
0.1678 2900 0.0367
0.1684 2910 0.0239
0.1689 2920 0.0274
0.1695 2930 0.0214
0.1701 2940 0.0217
0.1707 2950 0.0231
0.1712 2960 0.0207
0.1718 2970 0.0251
0.1724 2980 0.0249
0.1730 2990 0.0184
0.1736 3000 0.0241
0.1741 3010 0.0173
0.1747 3020 0.0258
0.1753 3030 0.0359
0.1759 3040 0.0313
0.1765 3050 0.0292
0.1770 3060 0.0349
0.1776 3070 0.0249
0.1782 3080 0.0369
0.1788 3090 0.0268
0.1793 3100 0.0326
0.1799 3110 0.0328
0.1805 3120 0.0228
0.1811 3130 0.0212
0.1817 3140 0.0202
0.1822 3150 0.0333
0.1828 3160 0.0325
0.1834 3170 0.0189
0.1840 3180 0.0405
0.1846 3190 0.0274
0.1851 3200 0.0187
0.1857 3210 0.0188
0.1863 3220 0.0204
0.1869 3230 0.0199
0.1874 3240 0.0191
0.1880 3250 0.0325
0.1886 3260 0.0216
0.1892 3270 0.0199
0.1898 3280 0.0211
0.1903 3290 0.0169
0.1909 3300 0.0261
0.1915 3310 0.0271
0.1921 3320 0.0178
0.1927 3330 0.0405
0.1932 3340 0.0313
0.1938 3350 0.026
0.1944 3360 0.0266
0.1950 3370 0.0255
0.1955 3380 0.0238
0.1961 3390 0.0274
0.1967 3400 0.0111
0.1973 3410 0.0234
0.1979 3420 0.0237
0.1984 3430 0.0282
0.1990 3440 0.0272
0.1996 3450 0.0221
0.2002 3460 0.0333
0.2008 3470 0.0301
0.2013 3480 0.0246
0.2019 3490 0.0235
0.2025 3500 0.0177
0.2031 3510 0.0297
0.2036 3520 0.0119
0.2042 3530 0.014
0.2048 3540 0.0203
0.2054 3550 0.0251
0.2060 3560 0.0206
0.2065 3570 0.0145
0.2071 3580 0.0178
0.2077 3590 0.0222
0.2083 3600 0.0223
0.2089 3610 0.0218
0.2094 3620 0.0176
0.2100 3630 0.032
0.2106 3640 0.0258
0.2112 3650 0.0274
0.2117 3660 0.0181
0.2123 3670 0.0282
0.2129 3680 0.0175
0.2135 3690 0.0192
0.2141 3700 0.0289
0.2146 3710 0.0218
0.2152 3720 0.0234
0.2158 3730 0.0318
0.2164 3740 0.0186
0.2170 3750 0.0128
0.2175 3760 0.0289
0.2181 3770 0.0153
0.2187 3780 0.0232
0.2193 3790 0.0287
0.2198 3800 0.0232
0.2204 3810 0.033
0.2210 3820 0.0271
0.2216 3830 0.0186
0.2222 3840 0.0164
0.2227 3850 0.016
0.2233 3860 0.0149
0.2239 3870 0.0334
0.2245 3880 0.0128
0.2251 3890 0.0194
0.2256 3900 0.0132
0.2262 3910 0.018
0.2268 3920 0.0181
0.2274 3930 0.0119
0.2279 3940 0.0204
0.2285 3950 0.0232
0.2291 3960 0.0162
0.2297 3970 0.0242
0.2303 3980 0.0172
0.2308 3990 0.0334
0.2314 4000 0.0204
0.2320 4010 0.0231
0.2326 4020 0.0434
0.2332 4030 0.0263
0.2337 4040 0.0221
0.2343 4050 0.0201
0.2349 4060 0.0174
0.2355 4070 0.0297
0.2360 4080 0.0157
0.2366 4090 0.0245
0.2372 4100 0.0159
0.2378 4110 0.0146
0.2384 4120 0.0287
0.2389 4130 0.0173
0.2395 4140 0.0209
0.2401 4150 0.0337
0.2407 4160 0.0178
0.2412 4170 0.0237
0.2418 4180 0.0162
0.2424 4190 0.0188
0.2430 4200 0.0202
0.2436 4210 0.0131
0.2441 4220 0.0157
0.2447 4230 0.0252
0.2453 4240 0.0142
0.2459 4250 0.0158
0.2465 4260 0.0195
0.2470 4270 0.0191
0.2476 4280 0.0158
0.2482 4290 0.0237
0.2488 4300 0.0151
0.2493 4310 0.0238
0.2499 4320 0.0222
0.2505 4330 0.0237
0.2511 4340 0.0181
0.2517 4350 0.0208
0.2522 4360 0.0152
0.2528 4370 0.022
0.2534 4380 0.0186
0.2540 4390 0.0338
0.2546 4400 0.0167
0.2551 4410 0.019
0.2557 4420 0.0234
0.2563 4430 0.0219
0.2569 4440 0.0184
0.2574 4450 0.0175
0.2580 4460 0.0207
0.2586 4470 0.0214
0.2592 4480 0.0252
0.2598 4490 0.0186
0.2603 4500 0.0169
0.2609 4510 0.0202
0.2615 4520 0.0453
0.2621 4530 0.0165
0.2627 4540 0.0189
0.2632 4550 0.017
0.2638 4560 0.024
0.2644 4570 0.0253
0.2650 4580 0.0382
0.2655 4590 0.0205
0.2661 4600 0.0314
0.2667 4610 0.026
0.2673 4620 0.0219
0.2679 4630 0.0277
0.2684 4640 0.0144
0.2690 4650 0.0381
0.2696 4660 0.0173
0.2702 4670 0.0414
0.2708 4680 0.0172
0.2713 4690 0.0157
0.2719 4700 0.0162
0.2725 4710 0.0083
0.2731 4720 0.0323
0.2736 4730 0.0198
0.2742 4740 0.0156
0.2748 4750 0.0168
0.2754 4760 0.021
0.2760 4770 0.0191
0.2765 4780 0.0184
0.2771 4790 0.0229
0.2777 4800 0.0245
0.2783 4810 0.0284
0.2789 4820 0.0243
0.2794 4830 0.0253
0.2800 4840 0.0251
0.2806 4850 0.0145
0.2812 4860 0.01
0.2817 4870 0.0235
0.2823 4880 0.018
0.2829 4890 0.0238
0.2835 4900 0.0271
0.2841 4910 0.0225
0.2846 4920 0.0156
0.2852 4930 0.0367
0.2858 4940 0.02
0.2864 4950 0.0274
0.2870 4960 0.0172
0.2875 4970 0.0246
0.2881 4980 0.0146
0.2887 4990 0.0228
0.2893 5000 0.0175
0.2898 5010 0.0186
0.2904 5020 0.0235
0.2910 5030 0.0258
0.2916 5040 0.031
0.2922 5050 0.0158
0.2927 5060 0.018
0.2933 5070 0.0229
0.2939 5080 0.0211
0.2945 5090 0.0127
0.2951 5100 0.0165
0.2956 5110 0.0199
0.2962 5120 0.0211
0.2968 5130 0.029
0.2974 5140 0.0185
0.2979 5150 0.0205
0.2985 5160 0.0122
0.2991 5170 0.0196
0.2997 5180 0.0189
0.3003 5190 0.0161
0.3008 5200 0.015
0.3014 5210 0.0244
0.3020 5220 0.0176
0.3026 5230 0.0167
0.3032 5240 0.0159
0.3037 5250 0.024
0.3043 5260 0.0203
0.3049 5270 0.0215
0.3055 5280 0.0196
0.3060 5290 0.0157
0.3066 5300 0.0262
0.3072 5310 0.0129
0.3078 5320 0.0206
0.3084 5330 0.0243
0.3089 5340 0.0255
0.3095 5350 0.0127
0.3101 5360 0.017
0.3107 5370 0.0142
0.3113 5380 0.0109
0.3118 5390 0.0139
0.3124 5400 0.0291
0.3130 5410 0.0193
0.3136 5420 0.0269
0.3141 5430 0.0214
0.3147 5440 0.0207
0.3153 5450 0.0172
0.3159 5460 0.0152
0.3165 5470 0.0282
0.3170 5480 0.0166
0.3176 5490 0.0111
0.3182 5500 0.022
0.3188 5510 0.017
0.3194 5520 0.0132
0.3199 5530 0.0263
0.3205 5540 0.0085
0.3211 5550 0.017
0.3217 5560 0.0132
0.3222 5570 0.0159
0.3228 5580 0.019
0.3234 5590 0.0335
0.3240 5600 0.0217
0.3246 5610 0.025
0.3251 5620 0.0143
0.3257 5630 0.0216
0.3263 5640 0.0166
0.3269 5650 0.0228
0.3275 5660 0.0227
0.3280 5670 0.0161
0.3286 5680 0.0253
0.3292 5690 0.0163
0.3298 5700 0.0104
0.3303 5710 0.0199
0.3309 5720 0.0237
0.3315 5730 0.0187
0.3321 5740 0.011
0.3327 5750 0.0109
0.3332 5760 0.0161
0.3338 5770 0.0224
0.3344 5780 0.019
0.3350 5790 0.0158
0.3356 5800 0.0291
0.3361 5810 0.0251
0.3367 5820 0.0083
0.3373 5830 0.0298
0.3379 5840 0.021
0.3384 5850 0.0187
0.3390 5860 0.0158
0.3396 5870 0.0298
0.3402 5880 0.0204
0.3408 5890 0.0177
0.3413 5900 0.0186
0.3419 5910 0.0292
0.3425 5920 0.0195
0.3431 5930 0.0174
0.3437 5940 0.0272
0.3442 5950 0.0119
0.3448 5960 0.0214
0.3454 5970 0.0301
0.3460 5980 0.0197
0.3465 5990 0.0183
0.3471 6000 0.0161
0.3477 6010 0.0251
0.3483 6020 0.0214
0.3489 6030 0.0222
0.3494 6040 0.0133
0.3500 6050 0.0193
0.3506 6060 0.0144
0.3512 6070 0.0172
0.3518 6080 0.0124
0.3523 6090 0.0243
0.3529 6100 0.0275
0.3535 6110 0.0142
0.3541 6120 0.0169
0.3546 6130 0.0153
0.3552 6140 0.015
0.3558 6150 0.0196
0.3564 6160 0.0265
0.3570 6170 0.0164
0.3575 6180 0.0098
0.3581 6190 0.0093
0.3587 6200 0.0162
0.3593 6210 0.0095
0.3598 6220 0.0153
0.3604 6230 0.0216
0.3610 6240 0.0183
0.3616 6250 0.0258
0.3622 6260 0.0165
0.3627 6270 0.0174
0.3633 6280 0.0179
0.3639 6290 0.0143
0.3645 6300 0.0277
0.3651 6310 0.0258
0.3656 6320 0.0122
0.3662 6330 0.0134
0.3668 6340 0.0239
0.3674 6350 0.0156
0.3679 6360 0.0137
0.3685 6370 0.0179
0.3691 6380 0.0343
0.3697 6390 0.0081
0.3703 6400 0.0178
0.3708 6410 0.0143
0.3714 6420 0.0288
0.3720 6430 0.0059
0.3726 6440 0.0183
0.3732 6450 0.0184
0.3737 6460 0.0153
0.3743 6470 0.0303
0.3749 6480 0.0204
0.3755 6490 0.0133
0.3760 6500 0.0167
0.3766 6510 0.0203
0.3772 6520 0.0199
0.3778 6530 0.0169
0.3784 6540 0.0279
0.3789 6550 0.0206
0.3795 6560 0.0171
0.3801 6570 0.0163
0.3807 6580 0.0198
0.3813 6590 0.0142
0.3818 6600 0.0195
0.3824 6610 0.0074
0.3830 6620 0.0206
0.3836 6630 0.0125
0.3841 6640 0.0132
0.3847 6650 0.014
0.3853 6660 0.0145
0.3859 6670 0.0159
0.3865 6680 0.0133
0.3870 6690 0.0169
0.3876 6700 0.0192
0.3882 6710 0.0134
0.3888 6720 0.0119
0.3894 6730 0.019
0.3899 6740 0.0162
0.3905 6750 0.0141
0.3911 6760 0.0117
0.3917 6770 0.0128
0.3922 6780 0.0142
0.3928 6790 0.0233
0.3934 6800 0.0136
0.3940 6810 0.0185
0.3946 6820 0.0152
0.3951 6830 0.018
0.3957 6840 0.0252
0.3963 6850 0.0198
0.3969 6860 0.0161
0.3975 6870 0.014
0.3980 6880 0.0144
0.3986 6890 0.0133
0.3992 6900 0.0199
0.3998 6910 0.0193
0.4003 6920 0.0135
0.4009 6930 0.0085
0.4015 6940 0.0156
0.4021 6950 0.0204
0.4027 6960 0.0293
0.4032 6970 0.0166
0.4038 6980 0.015
0.4044 6990 0.0098
0.4050 7000 0.0156
0.4056 7010 0.0092
0.4061 7020 0.0287
0.4067 7030 0.0149
0.4073 7040 0.0143
0.4079 7050 0.0137
0.4084 7060 0.0202
0.4090 7070 0.0115
0.4096 7080 0.0207
0.4102 7090 0.0073
0.4108 7100 0.0185
0.4113 7110 0.0174
0.4119 7120 0.0112
0.4125 7130 0.0137
0.4131 7140 0.0163
0.4137 7150 0.0203
0.4142 7160 0.0201
0.4148 7170 0.0245
0.4154 7180 0.0127
0.4160 7190 0.0177
0.4165 7200 0.0248
0.4171 7210 0.0177
0.4177 7220 0.0195
0.4183 7230 0.0151
0.4189 7240 0.0172
0.4194 7250 0.0115
0.4200 7260 0.0126
0.4206 7270 0.0147
0.4212 7280 0.0188
0.4218 7290 0.0152
0.4223 7300 0.0212
0.4229 7310 0.0247
0.4235 7320 0.0135
0.4241 7330 0.0208
0.4246 7340 0.0095
0.4252 7350 0.0254
0.4258 7360 0.0092
0.4264 7370 0.0114
0.4270 7380 0.0205
0.4275 7390 0.0217
0.4281 7400 0.0112
0.4287 7410 0.0164
0.4293 7420 0.0119
0.4299 7430 0.0235
0.4304 7440 0.015
0.4310 7450 0.01
0.4316 7460 0.0097
0.4322 7470 0.0213
0.4327 7480 0.0291
0.4333 7490 0.021
0.4339 7500 0.0214
0.4345 7510 0.0099
0.4351 7520 0.0112
0.4356 7530 0.0158
0.4362 7540 0.0121
0.4368 7550 0.0198
0.4374 7560 0.021
0.4380 7570 0.0139
0.4385 7580 0.011
0.4391 7590 0.0209
0.4397 7600 0.0256
0.4403 7610 0.0135
0.4408 7620 0.0215
0.4414 7630 0.0112
0.4420 7640 0.0081
0.4426 7650 0.0237
0.4432 7660 0.0148
0.4437 7670 0.0198
0.4443 7680 0.0113
0.4449 7690 0.0259
0.4455 7700 0.0132
0.4461 7710 0.0102
0.4466 7720 0.016
0.4472 7730 0.0123
0.4478 7740 0.0145
0.4484 7750 0.0172
0.4489 7760 0.0152
0.4495 7770 0.0269
0.4501 7780 0.0223
0.4507 7790 0.0191
0.4513 7800 0.0118
0.4518 7810 0.0164
0.4524 7820 0.0212
0.4530 7830 0.0163
0.4536 7840 0.0122
0.4542 7850 0.0104
0.4547 7860 0.0093
0.4553 7870 0.0304
0.4559 7880 0.0116
0.4565 7890 0.0123
0.4570 7900 0.0088
0.4576 7910 0.0154
0.4582 7920 0.014
0.4588 7930 0.01
0.4594 7940 0.0137
0.4599 7950 0.0186
0.4605 7960 0.0111
0.4611 7970 0.0141
0.4617 7980 0.0191
0.4623 7990 0.0223
0.4628 8000 0.0189
0.4634 8010 0.0088
0.4640 8020 0.0091
0.4646 8030 0.0159
0.4651 8040 0.021
0.4657 8050 0.0187
0.4663 8060 0.0207
0.4669 8070 0.0175
0.4675 8080 0.0148
0.4680 8090 0.0154
0.4686 8100 0.0158
0.4692 8110 0.0097
0.4698 8120 0.0091
0.4704 8130 0.0128
0.4709 8140 0.0126
0.4715 8150 0.0143
0.4721 8160 0.0187
0.4727 8170 0.0078
0.4732 8180 0.0126
0.4738 8190 0.0363
0.4744 8200 0.0292
0.4750 8210 0.0182
0.4756 8220 0.0099
0.4761 8230 0.0167
0.4767 8240 0.0116
0.4773 8250 0.0138
0.4779 8260 0.0149
0.4784 8270 0.0108
0.4790 8280 0.0123
0.4796 8290 0.0265
0.4802 8300 0.0161
0.4808 8310 0.0106
0.4813 8320 0.0186
0.4819 8330 0.0154
0.4825 8340 0.0118
0.4831 8350 0.0209
0.4837 8360 0.0222
0.4842 8370 0.0169
0.4848 8380 0.0288
0.4854 8390 0.0161
0.4860 8400 0.0227
0.4865 8410 0.0128
0.4871 8420 0.0298
0.4877 8430 0.0145
0.4883 8440 0.0174
0.4889 8450 0.0237
0.4894 8460 0.0101
0.4900 8470 0.0178
0.4906 8480 0.0235
0.4912 8490 0.0126
0.4918 8500 0.0186
0.4923 8510 0.0181
0.4929 8520 0.0173
0.4935 8530 0.0165
0.4941 8540 0.0148
0.4946 8550 0.0215
0.4952 8560 0.0107
0.4958 8570 0.012
0.4964 8580 0.0194
0.4970 8590 0.01
0.4975 8600 0.0107
0.4981 8610 0.0181
0.4987 8620 0.0153
0.4993 8630 0.0128
0.4999 8640 0.0272
0.5004 8650 0.0106
0.5010 8660 0.0167
0.5016 8670 0.0067
0.5022 8680 0.0192
0.5027 8690 0.0105
0.5033 8700 0.0162
0.5039 8710 0.0245
0.5045 8720 0.0168
0.5051 8730 0.0193
0.5056 8740 0.0187
0.5062 8750 0.0403
0.5068 8760 0.0192
0.5074 8770 0.0131
0.5080 8780 0.0158
0.5085 8790 0.0142
0.5091 8800 0.0128
0.5097 8810 0.0119
0.5103 8820 0.0211
0.5108 8830 0.0085
0.5114 8840 0.0187
0.5120 8850 0.0078
0.5126 8860 0.0124
0.5132 8870 0.0067
0.5137 8880 0.0082
0.5143 8890 0.0118
0.5149 8900 0.011
0.5155 8910 0.011
0.5161 8920 0.0166
0.5166 8930 0.0123
0.5172 8940 0.0099
0.5178 8950 0.0101
0.5184 8960 0.0092
0.5189 8970 0.0098
0.5195 8980 0.0261
0.5201 8990 0.0211
0.5207 9000 0.0211
0.5213 9010 0.0161
0.5218 9020 0.0244
0.5224 9030 0.0128
0.5230 9040 0.0135
0.5236 9050 0.0117
0.5242 9060 0.0168
0.5247 9070 0.0084
0.5253 9080 0.0141
0.5259 9090 0.013
0.5265 9100 0.0256
0.5270 9110 0.0205
0.5276 9120 0.0176
0.5282 9130 0.01
0.5288 9140 0.0131
0.5294 9150 0.0157
0.5299 9160 0.0116
0.5305 9170 0.0098
0.5311 9180 0.0282
0.5317 9190 0.0188
0.5323 9200 0.0148
0.5328 9210 0.0179
0.5334 9220 0.0273
0.5340 9230 0.0115
0.5346 9240 0.0162
0.5351 9250 0.0104
0.5357 9260 0.015
0.5363 9270 0.0103
0.5369 9280 0.0146
0.5375 9290 0.0161
0.5380 9300 0.0093
0.5386 9310 0.0127
0.5392 9320 0.0152
0.5398 9330 0.0149
0.5404 9340 0.0069
0.5409 9350 0.0125
0.5415 9360 0.0102
0.5421 9370 0.0131
0.5427 9380 0.0064
0.5432 9390 0.0145
0.5438 9400 0.0099
0.5444 9410 0.0067
0.5450 9420 0.0095
0.5456 9430 0.0115
0.5461 9440 0.0103
0.5467 9450 0.0115
0.5473 9460 0.025
0.5479 9470 0.0096
0.5485 9480 0.0066
0.5490 9490 0.0157
0.5496 9500 0.0149
0.5502 9510 0.0142
0.5508 9520 0.0146
0.5513 9530 0.0143
0.5519 9540 0.0084
0.5525 9550 0.0198
0.5531 9560 0.0116
0.5537 9570 0.0082
0.5542 9580 0.0201
0.5548 9590 0.0147
0.5554 9600 0.0235
0.5560 9610 0.0137
0.5566 9620 0.0182
0.5571 9630 0.0195
0.5577 9640 0.0119
0.5583 9650 0.0072
0.5589 9660 0.0303
0.5594 9670 0.0083
0.5600 9680 0.0099
0.5606 9690 0.0256
0.5612 9700 0.0112
0.5618 9710 0.0113
0.5623 9720 0.0116
0.5629 9730 0.0169
0.5635 9740 0.0083
0.5641 9750 0.0116
0.5647 9760 0.0148
0.5652 9770 0.0118
0.5658 9780 0.0136
0.5664 9790 0.0189
0.5670 9800 0.0132
0.5675 9810 0.0078
0.5681 9820 0.0045
0.5687 9830 0.0149
0.5693 9840 0.0148
0.5699 9850 0.0126
0.5704 9860 0.0141
0.5710 9870 0.0108
0.5716 9880 0.0157
0.5722 9890 0.021
0.5728 9900 0.008
0.5733 9910 0.0083
0.5739 9920 0.0123
0.5745 9930 0.0202
0.5751 9940 0.0109
0.5756 9950 0.0159
0.5762 9960 0.0131
0.5768 9970 0.0155
0.5774 9980 0.0124
0.5780 9990 0.0215
0.5785 10000 0.0098
0.5791 10010 0.0161
0.5797 10020 0.0078
0.5803 10030 0.0082
0.5809 10040 0.0211
0.5814 10050 0.0153
0.5820 10060 0.01
0.5826 10070 0.0102
0.5832 10080 0.0101
0.5837 10090 0.022
0.5843 10100 0.0244
0.5849 10110 0.0146
0.5855 10120 0.0138
0.5861 10130 0.0248
0.5866 10140 0.0107
0.5872 10150 0.0148
0.5878 10160 0.0197
0.5884 10170 0.0102
0.5889 10180 0.0128
0.5895 10190 0.0193
0.5901 10200 0.0193
0.5907 10210 0.0104
0.5913 10220 0.0134
0.5918 10230 0.0137
0.5924 10240 0.0093
0.5930 10250 0.0128
0.5936 10260 0.014
0.5942 10270 0.007
0.5947 10280 0.0129
0.5953 10290 0.014
0.5959 10300 0.0139
0.5965 10310 0.0163
0.5970 10320 0.0151
0.5976 10330 0.0114
0.5982 10340 0.0127
0.5988 10350 0.0164
0.5994 10360 0.0189
0.5999 10370 0.0071
0.6005 10380 0.0157
0.6011 10390 0.0146
0.6017 10400 0.0058
0.6023 10410 0.0165
0.6028 10420 0.0197
0.6034 10430 0.0115
0.6040 10440 0.0107
0.6046 10450 0.012
0.6051 10460 0.0212
0.6057 10470 0.0096
0.6063 10480 0.0121
0.6069 10490 0.0224
0.6075 10500 0.0094
0.6080 10510 0.0222
0.6086 10520 0.0138
0.6092 10530 0.0163
0.6098 10540 0.0109
0.6104 10550 0.0184
0.6109 10560 0.0082
0.6115 10570 0.0186
0.6121 10580 0.0052
0.6127 10590 0.016
0.6132 10600 0.0105
0.6138 10610 0.0084
0.6144 10620 0.0087
0.6150 10630 0.0121
0.6156 10640 0.0125
0.6161 10650 0.019
0.6167 10660 0.007
0.6173 10670 0.0094
0.6179 10680 0.009
0.6185 10690 0.0102
0.6190 10700 0.0106
0.6196 10710 0.0138
0.6202 10720 0.0271
0.6208 10730 0.0166
0.6213 10740 0.0131
0.6219 10750 0.0107
0.6225 10760 0.0224
0.6231 10770 0.0136
0.6237 10780 0.0117
0.6242 10790 0.0195
0.6248 10800 0.0145
0.6254 10810 0.0131
0.6260 10820 0.0115
0.6266 10830 0.0102
0.6271 10840 0.0129
0.6277 10850 0.0125
0.6283 10860 0.0173
0.6289 10870 0.0198
0.6294 10880 0.016
0.6300 10890 0.0066
0.6306 10900 0.0094
0.6312 10910 0.0046
0.6318 10920 0.0125
0.6323 10930 0.0154
0.6329 10940 0.0064
0.6335 10950 0.0125
0.6341 10960 0.0112
0.6347 10970 0.0174
0.6352 10980 0.0253
0.6358 10990 0.0126
0.6364 11000 0.0113
0.6370 11010 0.0169
0.6375 11020 0.0143
0.6381 11030 0.0166
0.6387 11040 0.0099
0.6393 11050 0.0061
0.6399 11060 0.016
0.6404 11070 0.0116
0.6410 11080 0.0099
0.6416 11090 0.0225
0.6422 11100 0.0075
0.6428 11110 0.0068
0.6433 11120 0.0141
0.6439 11130 0.015
0.6445 11140 0.011
0.6451 11150 0.0125
0.6456 11160 0.0157
0.6462 11170 0.0039
0.6468 11180 0.0056
0.6474 11190 0.0097
0.6480 11200 0.0142
0.6485 11210 0.0147
0.6491 11220 0.0099
0.6497 11230 0.006
0.6503 11240 0.0121
0.6509 11250 0.0174
0.6514 11260 0.0089
0.6520 11270 0.0087
0.6526 11280 0.0101
0.6532 11290 0.0113
0.6537 11300 0.0102
0.6543 11310 0.0124
0.6549 11320 0.0155
0.6555 11330 0.0122
0.6561 11340 0.0111
0.6566 11350 0.0153
0.6572 11360 0.0117
0.6578 11370 0.0096
0.6584 11380 0.0162
0.6590 11390 0.0152
0.6595 11400 0.022
0.6601 11410 0.0107
0.6607 11420 0.008
0.6613 11430 0.0184
0.6618 11440 0.0105
0.6624 11450 0.01
0.6630 11460 0.0136
0.6636 11470 0.0073
0.6642 11480 0.0192
0.6647 11490 0.0177
0.6653 11500 0.0118
0.6659 11510 0.0264
0.6665 11520 0.0152
0.6671 11530 0.0092
0.6676 11540 0.0155
0.6682 11550 0.0064
0.6688 11560 0.0232
0.6694 11570 0.0076
0.6699 11580 0.0049
0.6705 11590 0.0104
0.6711 11600 0.0225
0.6717 11610 0.0107
0.6723 11620 0.0143
0.6728 11630 0.0113
0.6734 11640 0.0122
0.6740 11650 0.0125
0.6746 11660 0.0096
0.6752 11670 0.0167
0.6757 11680 0.019
0.6763 11690 0.0149
0.6769 11700 0.0099
0.6775 11710 0.0187
0.6780 11720 0.008
0.6786 11730 0.0129
0.6792 11740 0.0102
0.6798 11750 0.0118
0.6804 11760 0.0193
0.6809 11770 0.0092
0.6815 11780 0.0065
0.6821 11790 0.0319
0.6827 11800 0.0105
0.6833 11810 0.0155
0.6838 11820 0.0087
0.6844 11830 0.0092
0.6850 11840 0.0239
0.6856 11850 0.0207
0.6861 11860 0.0084
0.6867 11870 0.0249
0.6873 11880 0.009
0.6879 11890 0.007
0.6885 11900 0.0156
0.6890 11910 0.0125
0.6896 11920 0.0115
0.6902 11930 0.0101
0.6908 11940 0.0121
0.6914 11950 0.0209
0.6919 11960 0.0103
0.6925 11970 0.0174
0.6931 11980 0.0105
0.6937 11990 0.0173
0.6942 12000 0.0127
0.6948 12010 0.0139
0.6954 12020 0.0148
0.6960 12030 0.0125
0.6966 12040 0.01
0.6971 12050 0.0142
0.6977 12060 0.0084
0.6983 12070 0.0089
0.6989 12080 0.0104
0.6995 12090 0.0117
0.7000 12100 0.0123
0.7006 12110 0.0187
0.7012 12120 0.0088
0.7018 12130 0.0154
0.7023 12140 0.0153
0.7029 12150 0.0109
0.7035 12160 0.0116
0.7041 12170 0.0106
0.7047 12180 0.011
0.7052 12190 0.007
0.7058 12200 0.0127
0.7064 12210 0.0134
0.7070 12220 0.0153
0.7075 12230 0.0154
0.7081 12240 0.0099
0.7087 12250 0.0209
0.7093 12260 0.0116
0.7099 12270 0.0127
0.7104 12280 0.0089
0.7110 12290 0.0056
0.7116 12300 0.0146
0.7122 12310 0.0188
0.7128 12320 0.0309
0.7133 12330 0.0107
0.7139 12340 0.0116
0.7145 12350 0.0118
0.7151 12360 0.0053
0.7156 12370 0.0118
0.7162 12380 0.0125
0.7168 12390 0.0103
0.7174 12400 0.0144
0.7180 12410 0.0079
0.7185 12420 0.0084
0.7191 12430 0.0177
0.7197 12440 0.0066
0.7203 12450 0.0085
0.7209 12460 0.0125
0.7214 12470 0.0092
0.7220 12480 0.0086
0.7226 12490 0.0087
0.7232 12500 0.0104
0.7237 12510 0.0089
0.7243 12520 0.0173
0.7249 12530 0.009
0.7255 12540 0.0127
0.7261 12550 0.0189
0.7266 12560 0.0121
0.7272 12570 0.0075
0.7278 12580 0.0159
0.7284 12590 0.0053
0.7290 12600 0.0257
0.7295 12610 0.018
0.7301 12620 0.0139
0.7307 12630 0.0098
0.7313 12640 0.0154
0.7318 12650 0.0228
0.7324 12660 0.0145
0.7330 12670 0.0137
0.7336 12680 0.009
0.7342 12690 0.0123
0.7347 12700 0.0138
0.7353 12710 0.0087
0.7359 12720 0.0163
0.7365 12730 0.0067
0.7371 12740 0.0133
0.7376 12750 0.0037
0.7382 12760 0.007
0.7388 12770 0.0134
0.7394 12780 0.0174
0.7399 12790 0.0098
0.7405 12800 0.0076
0.7411 12810 0.0077
0.7417 12820 0.008
0.7423 12830 0.0152
0.7428 12840 0.015
0.7434 12850 0.0072
0.7440 12860 0.0179
0.7446 12870 0.0138
0.7452 12880 0.013
0.7457 12890 0.0175
0.7463 12900 0.0161
0.7469 12910 0.0111
0.7475 12920 0.0115
0.7480 12930 0.0162
0.7486 12940 0.0111
0.7492 12950 0.0216
0.7498 12960 0.0078
0.7504 12970 0.0097
0.7509 12980 0.0092
0.7515 12990 0.0061
0.7521 13000 0.0119
0.7527 13010 0.016
0.7533 13020 0.0188
0.7538 13030 0.0086
0.7544 13040 0.0162
0.7550 13050 0.012
0.7556 13060 0.01
0.7561 13070 0.0065
0.7567 13080 0.0088
0.7573 13090 0.0089
0.7579 13100 0.0143
0.7585 13110 0.0074
0.7590 13120 0.0116
0.7596 13130 0.0075
0.7602 13140 0.008
0.7608 13150 0.012
0.7614 13160 0.0076
0.7619 13170 0.0131
0.7625 13180 0.0059
0.7631 13190 0.0108
0.7637 13200 0.01
0.7642 13210 0.0171
0.7648 13220 0.016
0.7654 13230 0.0149
0.7660 13240 0.0083
0.7666 13250 0.0114
0.7671 13260 0.0134
0.7677 13270 0.0135
0.7683 13280 0.0075
0.7689 13290 0.0143
0.7695 13300 0.0149
0.7700 13310 0.0131
0.7706 13320 0.0056
0.7712 13330 0.0133
0.7718 13340 0.0118
0.7723 13350 0.0108
0.7729 13360 0.0122
0.7735 13370 0.0057
0.7741 13380 0.0072
0.7747 13390 0.0117
0.7752 13400 0.0098
0.7758 13410 0.0114
0.7764 13420 0.0118
0.7770 13430 0.0105
0.7776 13440 0.0089
0.7781 13450 0.016
0.7787 13460 0.0185
0.7793 13470 0.0108
0.7799 13480 0.0124
0.7804 13490 0.0095
0.7810 13500 0.0124
0.7816 13510 0.0053
0.7822 13520 0.0204
0.7828 13530 0.0072
0.7833 13540 0.0132
0.7839 13550 0.0133
0.7845 13560 0.0092
0.7851 13570 0.0088
0.7857 13580 0.0077
0.7862 13590 0.0253
0.7868 13600 0.0076
0.7874 13610 0.0086
0.7880 13620 0.0157
0.7885 13630 0.0138
0.7891 13640 0.0177
0.7897 13650 0.0126
0.7903 13660 0.0047
0.7909 13670 0.0087
0.7914 13680 0.0167
0.7920 13690 0.0071
0.7926 13700 0.0068
0.7932 13710 0.0126
0.7938 13720 0.0185
0.7943 13730 0.0098
0.7949 13740 0.0065
0.7955 13750 0.0134
0.7961 13760 0.0095
0.7966 13770 0.0166
0.7972 13780 0.0204
0.7978 13790 0.0095
0.7984 13800 0.0186
0.7990 13810 0.017
0.7995 13820 0.0063
0.8001 13830 0.0153
0.8007 13840 0.0074
0.8013 13850 0.0113
0.8019 13860 0.0063
0.8024 13870 0.0103
0.8030 13880 0.019
0.8036 13890 0.0208
0.8042 13900 0.01
0.8047 13910 0.0238
0.8053 13920 0.0075
0.8059 13930 0.009
0.8065 13940 0.0117
0.8071 13950 0.0086
0.8076 13960 0.0061
0.8082 13970 0.0129
0.8088 13980 0.013
0.8094 13990 0.0101
0.8100 14000 0.0154
0.8105 14010 0.0234
0.8111 14020 0.0095
0.8117 14030 0.0148
0.8123 14040 0.0069
0.8128 14050 0.015
0.8134 14060 0.012
0.8140 14070 0.0064
0.8146 14080 0.0164
0.8152 14090 0.0123
0.8157 14100 0.0137
0.8163 14110 0.0131
0.8169 14120 0.0067
0.8175 14130 0.0103
0.8181 14140 0.0136
0.8186 14150 0.01
0.8192 14160 0.0125
0.8198 14170 0.0037
0.8204 14180 0.0101
0.8209 14190 0.0154
0.8215 14200 0.0076
0.8221 14210 0.0061
0.8227 14220 0.0076
0.8233 14230 0.019
0.8238 14240 0.0104
0.8244 14250 0.009
0.8250 14260 0.0101
0.8256 14270 0.0141
0.8261 14280 0.0081
0.8267 14290 0.0144
0.8273 14300 0.0154
0.8279 14310 0.0103
0.8285 14320 0.0106
0.8290 14330 0.0106
0.8296 14340 0.0134
0.8302 14350 0.0127
0.8308 14360 0.0119
0.8314 14370 0.0064
0.8319 14380 0.0137
0.8325 14390 0.0104
0.8331 14400 0.0045
0.8337 14410 0.0061
0.8342 14420 0.0162
0.8348 14430 0.0109
0.8354 14440 0.0053
0.8360 14450 0.0048
0.8366 14460 0.0118
0.8371 14470 0.0206
0.8377 14480 0.0089
0.8383 14490 0.0103
0.8389 14500 0.0115
0.8395 14510 0.0093
0.8400 14520 0.0112
0.8406 14530 0.0052
0.8412 14540 0.0149
0.8418 14550 0.0146
0.8423 14560 0.0092
0.8429 14570 0.0152
0.8435 14580 0.0048
0.8441 14590 0.0119
0.8447 14600 0.0116
0.8452 14610 0.0126
0.8458 14620 0.0104
0.8464 14630 0.0085
0.8470 14640 0.0157
0.8476 14650 0.01
0.8481 14660 0.0083
0.8487 14670 0.012
0.8493 14680 0.0165
0.8499 14690 0.0092
0.8504 14700 0.013
0.8510 14710 0.0092
0.8516 14720 0.0149
0.8522 14730 0.025
0.8528 14740 0.0095
0.8533 14750 0.0142
0.8539 14760 0.0092
0.8545 14770 0.0134
0.8551 14780 0.0117
0.8557 14790 0.0131
0.8562 14800 0.0098
0.8568 14810 0.0162
0.8574 14820 0.0123
0.8580 14830 0.0122
0.8585 14840 0.0105
0.8591 14850 0.0051
0.8597 14860 0.0226
0.8603 14870 0.0089
0.8609 14880 0.0082
0.8614 14890 0.0125
0.8620 14900 0.0197
0.8626 14910 0.0047
0.8632 14920 0.0101
0.8638 14930 0.0136
0.8643 14940 0.0052
0.8649 14950 0.0125
0.8655 14960 0.0061
0.8661 14970 0.0142
0.8666 14980 0.0064
0.8672 14990 0.0032
0.8678 15000 0.0069
0.8684 15010 0.0056
0.8690 15020 0.0075
0.8695 15030 0.013
0.8701 15040 0.0087
0.8707 15050 0.0111
0.8713 15060 0.014
0.8719 15070 0.013
0.8724 15080 0.0188
0.8730 15090 0.0063
0.8736 15100 0.0107
0.8742 15110 0.014
0.8747 15120 0.0103
0.8753 15130 0.0097
0.8759 15140 0.0089
0.8765 15150 0.0116
0.8771 15160 0.011
0.8776 15170 0.0111
0.8782 15180 0.0076
0.8788 15190 0.0107
0.8794 15200 0.01
0.8800 15210 0.0055
0.8805 15220 0.0189
0.8811 15230 0.0066
0.8817 15240 0.0057
0.8823 15250 0.0115
0.8828 15260 0.0072
0.8834 15270 0.0096
0.8840 15280 0.014
0.8846 15290 0.0133
0.8852 15300 0.0089
0.8857 15310 0.0122
0.8863 15320 0.0054
0.8869 15330 0.0209
0.8875 15340 0.013
0.8881 15350 0.0153
0.8886 15360 0.0098
0.8892 15370 0.0127
0.8898 15380 0.0081
0.8904 15390 0.0113
0.8909 15400 0.0141
0.8915 15410 0.0092
0.8921 15420 0.0112
0.8927 15430 0.0059
0.8933 15440 0.0123
0.8938 15450 0.0054
0.8944 15460 0.0071
0.8950 15470 0.0139
0.8956 15480 0.0112
0.8962 15490 0.0101
0.8967 15500 0.0074
0.8973 15510 0.0234
0.8979 15520 0.0233
0.8985 15530 0.0161
0.8990 15540 0.0077
0.8996 15550 0.0123
0.9002 15560 0.0124
0.9008 15570 0.0107
0.9014 15580 0.007
0.9019 15590 0.0077
0.9025 15600 0.0113
0.9031 15610 0.0075
0.9037 15620 0.0073
0.9043 15630 0.0067
0.9048 15640 0.0201
0.9054 15650 0.0177
0.9060 15660 0.0036
0.9066 15670 0.0085
0.9071 15680 0.0113
0.9077 15690 0.0097
0.9083 15700 0.0128
0.9089 15710 0.0106
0.9095 15720 0.0118
0.9100 15730 0.0105
0.9106 15740 0.0183
0.9112 15750 0.0149
0.9118 15760 0.0146
0.9124 15770 0.0101
0.9129 15780 0.0092
0.9135 15790 0.0127
0.9141 15800 0.0105
0.9147 15810 0.0095
0.9152 15820 0.0099
0.9158 15830 0.021
0.9164 15840 0.0166
0.9170 15850 0.0036
0.9176 15860 0.0142
0.9181 15870 0.014
0.9187 15880 0.006
0.9193 15890 0.01
0.9199 15900 0.0165
0.9205 15910 0.0098
0.9210 15920 0.0089
0.9216 15930 0.0133
0.9222 15940 0.0106
0.9228 15950 0.008
0.9233 15960 0.0062
0.9239 15970 0.0055
0.9245 15980 0.0164
0.9251 15990 0.0115
0.9257 16000 0.0162
0.9262 16010 0.0094
0.9268 16020 0.0158
0.9274 16030 0.0081
0.9280 16040 0.0065
0.9286 16050 0.0088
0.9291 16060 0.0033
0.9297 16070 0.0077
0.9303 16080 0.009
0.9309 16090 0.0165
0.9314 16100 0.0076
0.9320 16110 0.0076
0.9326 16120 0.006
0.9332 16130 0.0095
0.9338 16140 0.0158
0.9343 16150 0.0094
0.9349 16160 0.0093
0.9355 16170 0.0154
0.9361 16180 0.0101
0.9367 16190 0.0134
0.9372 16200 0.0087
0.9378 16210 0.0171
0.9384 16220 0.0161
0.9390 16230 0.0154
0.9395 16240 0.0161
0.9401 16250 0.0102
0.9407 16260 0.012
0.9413 16270 0.0139
0.9419 16280 0.0107
0.9424 16290 0.0056
0.9430 16300 0.0117
0.9436 16310 0.0193
0.9442 16320 0.0206
0.9447 16330 0.016
0.9453 16340 0.0071
0.9459 16350 0.0162
0.9465 16360 0.006
0.9471 16370 0.0149
0.9476 16380 0.0064
0.9482 16390 0.0157
0.9488 16400 0.0074
0.9494 16410 0.0134
0.9500 16420 0.016
0.9505 16430 0.0077
0.9511 16440 0.0085
0.9517 16450 0.0047
0.9523 16460 0.0111
0.9528 16470 0.0063
0.9534 16480 0.0136
0.9540 16490 0.0094
0.9546 16500 0.0106
0.9552 16510 0.0066
0.9557 16520 0.0091
0.9563 16530 0.0048
0.9569 16540 0.0195
0.9575 16550 0.0118
0.9581 16560 0.0155
0.9586 16570 0.03
0.9592 16580 0.0127
0.9598 16590 0.0102
0.9604 16600 0.0132
0.9609 16610 0.0031
0.9615 16620 0.0051
0.9621 16630 0.0099
0.9627 16640 0.013
0.9633 16650 0.0067
0.9638 16660 0.0082
0.9644 16670 0.015
0.9650 16680 0.0131
0.9656 16690 0.0111
0.9662 16700 0.015
0.9667 16710 0.009
0.9673 16720 0.0097
0.9679 16730 0.0127
0.9685 16740 0.0195
0.9690 16750 0.0041
0.9696 16760 0.0029
0.9702 16770 0.0112
0.9708 16780 0.0112
0.9714 16790 0.0184
0.9719 16800 0.0119
0.9725 16810 0.0079
0.9731 16820 0.0071
0.9737 16830 0.0077
0.9743 16840 0.0108
0.9748 16850 0.0067
0.9754 16860 0.0077
0.9760 16870 0.0101
0.9766 16880 0.0106
0.9771 16890 0.0067
0.9777 16900 0.0043
0.9783 16910 0.0075
0.9789 16920 0.0126
0.9795 16930 0.0074
0.9800 16940 0.0114
0.9806 16950 0.0147
0.9812 16960 0.009
0.9818 16970 0.0093
0.9824 16980 0.0148
0.9829 16990 0.0076
0.9835 17000 0.0042
0.9841 17010 0.008
0.9847 17020 0.0146
0.9852 17030 0.0102
0.9858 17040 0.0043
0.9864 17050 0.0113
0.9870 17060 0.0197
0.9876 17070 0.0054
0.9881 17080 0.0038
0.9887 17090 0.006
0.9893 17100 0.0174
0.9899 17110 0.0156
0.9905 17120 0.0182
0.9910 17130 0.0137
0.9916 17140 0.0068
0.9922 17150 0.0153
0.9928 17160 0.0051
0.9933 17170 0.0085
0.9939 17180 0.0111
0.9945 17190 0.0097
0.9951 17200 0.0064
0.9957 17210 0.0094
0.9962 17220 0.0071
0.9968 17230 0.0085
0.9974 17240 0.0115
0.9980 17250 0.0175
0.9986 17260 0.0108
0.9991 17270 0.0201
0.9997 17280 0.0105

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
-
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for iambestfeed/phobert-base-v2-wiki-data-filter_fasttext_0.6_wseg-lr2e-05-1-epochs-bs-48

Finetuned
(260)
this model

Dataset used to train iambestfeed/phobert-base-v2-wiki-data-filter_fasttext_0.6_wseg-lr2e-05-1-epochs-bs-48