license: mit
Usage
Code example
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of Japan?",
"Kyoto",
"Tokyo",
"Beijing"
]
tokenizer = AutoTokenizer.from_pretrained("iamgroot42/rover_nexus")
model = AutoModel.from_pretrained("iamgroot42/rover_nexus")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
Use with sentence-transformers:
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a sad person']
model = SentenceTransformer('iamgroot42/rover_nexus')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
Model training details and data will be uploaded soon!
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported95.776
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported93.823
- f1_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported95.937
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported82.636
- ap_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported82.636
- main_score on MTEB AmazonCounterfactualClassification (en)test set self-reported95.776
- accuracy on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- f1 on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- f1_weighted on MTEB AmazonPolarityClassification (default)test set self-reported97.714
- ap on MTEB AmazonPolarityClassification (default)test set self-reported96.536