File size: 18,763 Bytes
42159d0
 
 
 
 
711f8e1
42159d0
 
 
 
 
6ccf596
42159d0
 
 
 
 
 
 
 
 
 
 
bf7d587
42159d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7d587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42159d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
---
license: apache-2.0
language:
- th
- en
base_model: iapp/chinda-qwen3-4b
pipeline_tag: text-generation
tags:
- thai
---

# 🇹🇭 Chinda Opensource Thai LLM 4B (GGUF Q4_K_M)

**Latest Model, Think in Thai, Answer in Thai, Built by Thai Startup**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/RTzTckBAT3MjYp950UamV.jpeg)

Chinda Opensource Thai LLM 4B is iApp Technology's cutting-edge Thai language model that brings advanced thinking capabilities to the Thai AI ecosystem. Built on the latest Qwen3-4B architecture, Chinda represents our commitment to developing sovereign AI solutions for Thailand.

## 🚀 Quick Links

- **🌐 Demo:** [https://chindax.iapp.co.th](https://chindax.iapp.co.th) (Choose ChindaLLM 4b)
- **📦 Model Download:** [https://huggingface.co/iapp/chinda-qwen3-4b](https://huggingface.co/iapp/chinda-qwen3-4b)
- **🐋 Ollama:** [https://ollama.com/iapp/chinda-qwen3-4b](https://ollama.com/iapp/chinda-qwen3-4b)
- **🏠 Homepage:** [https://iapp.co.th/products/chinda-opensource-llm](https://iapp.co.th/products/chinda-opensource-llm)
- **📄 License:** Apache 2.0

## ✨ Key Features

### 🆓 **0. Free and Opensource for Everyone**
Chinda LLM 4B is completely free and open-source, enabling developers, researchers, and businesses to build Thai AI applications without restrictions.

### 🧠 **1. Advanced Thinking Model**
- **Highest score among Thai LLMs in 4B category**
- Seamless switching between thinking and non-thinking modes
- Superior reasoning capabilities for complex problems
- Can be turned off for efficient general-purpose dialogue

### 🇹🇭 **2. Exceptional Thai Language Accuracy**
- **98.4% accuracy** in outputting Thai language
- Prevents unwanted Chinese and foreign language outputs
- Specifically fine-tuned for Thai linguistic patterns

### 🆕 **3. Latest Architecture**
- Based on the cutting-edge **Qwen3-4B** model
- Incorporates the latest advancements in language modeling
- Optimized for both performance and efficiency

### 📜 **4. Apache 2.0 License**
- Commercial use permitted
- Modification and distribution allowed
- No restrictions on private use

## 📊 Benchmark Results

Chinda LLM 4B demonstrates superior performance compared to other Thai language models in its category:

| Benchmark | Language | Chinda LLM 4B | Alternative* | 
|-----------|----------|---------------|-------------|
| **AIME24** | English | **0.533** | 0.100 |
| | Thai | **0.100** | 0.000 |
| **LiveCodeBench** | English | **0.665** | 0.209 |
| | Thai | **0.198** | 0.144 |
| **MATH500** | English | **0.908** | 0.702 |
| | Thai | **0.612** | 0.566 |
| **IFEVAL** | English | **0.849** | 0.848 |
| | Thai | 0.683 | **0.740** |
| **Language Accuracy** | Thai | 0.984 | **0.992** |
| **OpenThaiEval** | Thai | **0.651** | 0.544 |
| **AVERAGE** | | **0.569** | 0.414 |

* Alternative: scb10x_typhoon2.1-gemma3-4b
*  Tested by Skythought and Evalscope Benchmark Libraries by iApp Technology team. Results show Chinda LLM 4B achieving **37% better overall performance** than the nearest alternative.

## ✅ Suitable For

### 🔍 **1. RAG Applications (Sovereign AI)**
Perfect for building Retrieval-Augmented Generation systems that keep data processing within Thai sovereignty.

### 📱 **2. Mobile and Laptop Applications**
Reliable Small Language Model optimized for edge computing and personal devices.

### 🧮 **3. Math Calculation**
Excellent performance in mathematical reasoning and problem-solving.

### 💻 **4. Code Assistant**
Strong capabilities in code generation and programming assistance.

### ⚡ **5. Resource Efficiency**
Very fast inference with minimal GPU memory consumption, ideal for production deployments.

## ❌ Not Suitable For

### 📚 **Factual Questions Without Context**
As a 4B parameter model, it may hallucinate when asked for specific facts without provided context. Always use with RAG or provide relevant context for factual queries.

## 🛠️ Quick Start

### Installation

```bash
pip install transformers torch
```

### Basic Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "iapp/chinda-qwen3-4b"

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# Prepare the model input
prompt = "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย"
messages = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # Enable thinking mode for better reasoning
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# Generate response
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024,
    temperature=0.6,
    top_p=0.95,
    top_k=20,
    do_sample=True
)

output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()

# Parse thinking content (if enabled)
try:
    # Find </think> token (151668)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("🧠 Thinking:", thinking_content)
print("💬 Response:", content)
```

### Switching Between Thinking and Non-Thinking Mode

#### Enable Thinking Mode (Default)
```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # Enable detailed reasoning
)
```

#### Disable Thinking Mode (For Efficiency)
```python
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False  # Fast response mode
)
```

### API Deployment

#### Using vLLM
```bash
pip install vllm>=0.8.5
vllm serve iapp/chinda-qwen3-4b --enable-reasoning --reasoning-parser deepseek_r1
```

#### Using SGLang
```bash
pip install sglang>=0.4.6.post1
python -m sglang.launch_server --model-path iapp/chinda-qwen3-4b --reasoning-parser qwen3
```

#### Using Ollama (Easy Local Setup)

**Installation:**
```bash
# Install Ollama (if not already installed)
curl -fsSL https://ollama.com/install.sh | sh

# Pull Chinda LLM 4B model
ollama pull iapp/chinda-qwen3-4b
```

**Basic Usage:**
```bash
# Start chatting with Chinda LLM
ollama run iapp/chinda-qwen3-4b

# Example conversation
ollama run iapp/chinda-qwen3-4b "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย"
```

**API Server:**
```bash
# Start Ollama API server
ollama serve

# Use with curl
curl http://localhost:11434/api/generate -d '{
  "model": "iapp/chinda-qwen3-4b",
  "prompt": "สวัสดีครับ",
  "stream": false
}'
```

**Model Specifications:**<br>
- **Size:** 2.5GB (quantized)<br>
- **Context Window:** 40K tokens<br>
- **Architecture:** Optimized for local deployment<br>
- **Performance:** Fast inference on consumer hardware<br>

## 🔧 Advanced Configuration

### Processing Long Texts

Chinda LLM 4B natively supports up to 32,768 tokens. For longer contexts, enable YaRN scaling:

```json
{
    "rope_scaling": {
        "rope_type": "yarn",
        "factor": 4.0,
        "original_max_position_embeddings": 32768
    }
}
```

### Recommended Parameters

**For Thinking Mode:**
- Temperature: 0.6
- Top-P: 0.95
- Top-K: 20
- Min-P: 0

**For Non-Thinking Mode:**
- Temperature: 0.7
- Top-P: 0.8
- Top-K: 20
- Min-P: 0

## 📝 Context Length & Template Format

### Context Length Support
- **Native Context Length:** 32,768 tokens
- **Extended Context Length:** Up to 131,072 tokens (with YaRN scaling)
- **Input + Output:** Total conversation length supported
- **Recommended Usage:** Keep conversations under 32K tokens for optimal performance

### Chat Template Format

Chinda LLM 4B uses a standardized chat template format for consistent interactions:

```python
# Basic template structure
messages = [
    {"role": "system", "content": "You are a helpful Thai AI assistant."},
    {"role": "user", "content": "สวัสดีครับ"},
    {"role": "assistant", "content": "สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ"},
    {"role": "user", "content": "ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย"}
]

# Apply template with thinking mode
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True
)
```

### Template Structure

The template follows the standard conversational format:

```
<|im_start|>system
You are a helpful Thai AI assistant.<|im_end|>
<|im_start|>user
สวัสดีครับ<|im_end|>
<|im_start|>assistant
สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ<|im_end|>
<|im_start|>user
ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย<|im_end|>
<|im_start|>assistant
```

### Advanced Template Usage

```python
# Multi-turn conversation with thinking control
def create_conversation(messages, enable_thinking=True):
    # Add system message if not present
    if not messages or messages[0]["role"] != "system":
        system_msg = {
            "role": "system", 
            "content": "คุณเป็น AI ผู้ช่วยที่ฉลาดและเป็นประโยชน์ พูดภาษาไทยได้อย่างเป็นธรรมชาติ"
        }
        messages = [system_msg] + messages
    
    # Apply chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        enable_thinking=enable_thinking
    )
    
    return text

# Example usage
conversation = [
    {"role": "user", "content": "คำนวณ 15 × 23 = ?"},
]

prompt = create_conversation(conversation, enable_thinking=True)
```

### Dynamic Mode Switching

You can control thinking mode within conversations using special commands:

```python
# Enable thinking for complex problems
messages = [
    {"role": "user", "content": "/think แก้สมการ: x² + 5x - 14 = 0"}
]

# Disable thinking for quick responses  
messages = [
    {"role": "user", "content": "/no_think สวัสดี"}
]
```

### Context Management Best Practices

1. **Monitor Token Count:** Keep track of total tokens (input + output)
2. **Truncate Old Messages:** Remove oldest messages when approaching limits
3. **Use YaRN for Long Contexts:** Enable rope scaling for documents > 32K tokens
4. **Batch Processing:** For very long texts, consider chunking and processing in batches

```python
def manage_context(messages, max_tokens=30000):
    """Simple context management function"""
    total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
    
    while total_tokens > max_tokens and len(messages) > 2:
        # Keep system message and remove oldest user/assistant pair
        if messages[1]["role"] == "user":
            messages.pop(1)  # Remove user message
            if len(messages) > 1 and messages[1]["role"] == "assistant":
                messages.pop(1)  # Remove corresponding assistant message
        
        total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
    
    return messages
```

## 🏢 Enterprise Support

For enterprise deployments, custom training, or commercial support, contact us at:
- **Email:** [email protected]
- **Website:** [iapp.co.th](https://iapp.co.th)

## ❓ Frequently Asked Questions

<details>
<summary><strong>🏷️ Why is it named "Chinda"?</strong></summary>

The name "Chinda" (จินดา) comes from "จินดามณี" (Chindamani), which is considered the first book of Thailand written by Phra Horathibodi (Sri Dharmasokaraja) in the Sukhothai period. Just as จินดามณี was a foundational text for Thai literature and learning, Chinda LLM represents our foundation for Thai sovereign AI - a model that truly understands and thinks in Thai, preserving and advancing Thai language capabilities in the digital age.

</details>

<details>
<summary><strong>⚖️ Can I use Chinda LLM 4B for commercial purposes?</strong></summary>

Yes! Chinda LLM 4B is released under the **Apache 2.0 License**, which allows:
-**Commercial use** - Use in commercial products and services
-**Research use** - Academic and research applications
-**Modification** - Adapt and modify the model
-**Distribution** - Share and redistribute the model
-**Private use** - Use for internal company projects

No restrictions on commercial applications - build and deploy freely!

</details>

<details>
<summary><strong>🧠 What's the difference between thinking and non-thinking mode?</strong></summary>

**Thinking Mode (`enable_thinking=True`):**
- Model shows its reasoning process in `<think>...</think>` blocks
- Better for complex problems, math, coding, logical reasoning
- Slower but more accurate responses
- Recommended for tasks requiring deep analysis

**Non-Thinking Mode (`enable_thinking=False`):**
- Direct answers without showing reasoning
- Faster responses for general conversations
- Better for simple queries and chat applications
- More efficient resource usage

You can switch between modes or let users control it dynamically using `/think` and `/no_think` commands.

</details>

<details>
<summary><strong>📊 How does Chinda LLM 4B compare to other Thai language models?</strong></summary>

Chinda LLM 4B achieves **37% better overall performance** compared to the nearest alternative:

- **Overall Average:** 0.569 vs 0.414 (alternative)
- **Math (MATH500):** 0.908 vs 0.702 (English), 0.612 vs 0.566 (Thai)
- **Code (LiveCodeBench):** 0.665 vs 0.209 (English), 0.198 vs 0.144 (Thai)
- **Thai Language Accuracy:** 98.4% (prevents Chinese/foreign text output)
- **OpenThaiEval:** 0.651 vs 0.544

It's currently the **highest-scoring Thai LLM in the 4B parameter category**.

</details>

<details>
<summary><strong>💻 What are the system requirements to run Chinda LLM 4B?</strong></summary>

**Minimum Requirements:**
- **GPU:** 8GB VRAM (RTX 3070/4060 Ti or better)
- **RAM:** 16GB system memory
- **Storage:** 8GB free space for model download
- **Python:** 3.8+ with PyTorch

**Recommended for Production:**
- **GPU:** 16GB+ VRAM (RTX 4080/A4000 or better)
- **RAM:** 32GB+ system memory
- **Storage:** SSD for faster loading

**CPU-Only Mode:** Possible but significantly slower (not recommended for production)

</details>

<details>
<summary><strong>🔧 Can I fine-tune Chinda LLM 4B for my specific use case?</strong></summary>

Yes! As an open-source model under Apache 2.0 license, you can:

- **Fine-tune** on your domain-specific data
- **Customize** for specific tasks or industries
- **Modify** the architecture if needed
- **Create derivatives** for specialized applications

Popular fine-tuning frameworks that work with Chinda:
- **Unsloth** - Fast and memory-efficient
- **LoRA/QLoRA** - Parameter-efficient fine-tuning
- **Hugging Face Transformers** - Full fine-tuning
- **Axolotl** - Advanced training configurations

Need help with fine-tuning? Contact our team at [email protected]

</details>

<details>
<summary><strong>🌍 What languages does Chinda LLM 4B support?</strong></summary>

**Primary Languages:**
- **Thai** - Native-level understanding and generation (98.4% accuracy)
- **English** - Strong performance across all benchmarks

**Additional Languages:**
- 100+ languages supported (inherited from Qwen3-4B base)
- Focus optimized for Thai-English bilingual tasks
- Code generation in multiple programming languages

**Special Features:**
- **Code-switching** between Thai and English
- **Translation** between Thai and other languages
- **Multilingual reasoning** capabilities

</details>

<details>
<summary><strong>🔍 Is the training data publicly available?</strong></summary>

The model weights are open-source, but the specific training datasets are not publicly released. However:

- **Base Model:** Built on Qwen3-4B (Alibaba's open foundation)
- **Thai Optimization:** Custom dataset curation for Thai language tasks
- **Quality Focus:** Carefully selected high-quality Thai content
- **Privacy Compliant:** No personal or sensitive data included

For research collaborations or dataset inquiries, contact our research team.

</details>

<details>
<summary><strong>🆘 How do I get support or report issues?</strong></summary>

**For Technical Issues:**
- **GitHub Issues:** Report bugs and technical problems
- **Hugging Face:** Model-specific questions and discussions
- **Documentation:** Check our comprehensive guides

**For Commercial Support:**
- **Email:** [email protected]
- **Enterprise Support:** Custom training, deployment assistance
- **Consulting:** Integration and optimization services

**Community Support:**
- **Thai AI Community:** Join discussions about Thai AI development
- **Developer Forums:** Connect with other Chinda users

</details>

<details>
<summary><strong>📥 How large is the model download and what format is it in?</strong></summary>

**Model Specifications:**
- **Parameters:** 4.02 billion (4B)
- **Download Size:** ~8GB (compressed)
- **Format:** Safetensors (recommended) and PyTorch
- **Precision:** BF16 (Brain Float 16)

**Download Options:**
- **Hugging Face Hub:** `huggingface.co/iapp/chinda-qwen3-4b`
- **Git LFS:** For version control integration
- **Direct Download:** Individual model files
- **Quantized Versions:** Available for reduced memory usage (GGUF, AWQ)

**Quantization Options:**
- **4-bit (GGUF):** ~2.5GB, runs on 4GB VRAM
- **8-bit:** ~4GB, balanced performance/memory
- **16-bit (Original):** ~8GB, full performance

</details>

## 📚 Citation

If you use Chinda LLM 4B in your research or projects, please cite:

```bibtex
@misc{chinda-llm-4b,
  title={Chinda LLM 4B: Thai Sovereign AI Language Model},
  author={iApp Technology},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/iapp/chinda-qwen3-4b}
}
```

---

*Built with 🇹🇭 by iApp Technology - Empowering Thai Businesses with Sovereign AI Excellence*

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/qNa4bznh179myghTFcpFp.jpeg)

**Powered by iApp Technology**

<i>Disclaimer: Provided responses are not guaranteed.</i>