selfies-ted

selfies-ted is an transformer based encoder decoder model for molecular representations using SELFIES.

selfies-ted

Usage

Import

from transformers import AutoTokenizer, AutoModel
import selfies as sf
import torch

Load the model and tokenizer

tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
model = AutoModel.from_pretrained("ibm/materials.selfies-ted")

Encode SMILES strings to selfies

smiles = "c1ccccc1"
selfies = sf.encoder(smiles)
selfies = selfies.replace("][", "] [")

Get embedding

token = tokenizer(selfies, return_tensors='pt', max_length=128, truncation=True, padding='max_length')
input_ids = token['input_ids']
attention_mask = token['attention_mask']
outputs = model.encoder(input_ids=input_ids, attention_mask=attention_mask)
model_output = outputs.last_hidden_state

input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float()
sum_embeddings = torch.sum(model_output * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
model_output = sum_embeddings / sum_mask
Downloads last month
1,115
Safetensors
Model size
358M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using ibm/materials.selfies-ted 3

Collection including ibm/materials.selfies-ted