MonarchPipe-7B-slerp

MonarchPipe-7B-slerp is a merge of the following models using LazyMergekit:

πŸ† Eval

Nous

Eval results from the Nous benchmark suite (performed using LLM AutoEval).

Model Average AGIEval GPT4All TruthfulQA Bigbench
MonarchPipe-7B-slerp πŸ“„ 58.77 46.12 74.89 66.59 47.49
AlphaMonarch-7B πŸ“„ 62.74 45.37 77.01 78.39 50.2
Monarch-7B πŸ“„ 62.68 45.48 77.07 78.04 50.14
OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94
NeuralHermes-2.5-Mistral-7B πŸ“„ 53.51 43.67 73.24 55.37 41.76

🧩 Configuration

slices:
  - sources:
      - model: OpenPipe/mistral-ft-optimized-1227
        layer_range: [0, 32]
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1227
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ichigoberry/MonarchPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
99
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ichigoberry/MonarchPipe-7B-slerp

Spaces using ichigoberry/MonarchPipe-7B-slerp 6