Quantized Ring-Linear-2.0
Introduction
To enable deployment of Ring-Linear-2.0 on memory-constrained devices, we release quantized weights using the GPTQ INT4 format. Additionally, we evaluate the online FP8 quantization performance of Ring-Linear-2.0
models, which closely approaches that of BF16 precision.
Model Downloads
Model | Maximum Supported Length | Download |
---|---|---|
Ring-flash-linear-2.0-GPTQ-int4 | 128k | 🤗 HuggingFace 🤖 ModelScope |
Ring-mini-linear-2.0-GPTQ-int4 | 512k | 🤗 HuggingFace 🤖 ModelScope |
Quickstart
🚀 vLLM
Environment Preparation
Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below.
First, create a Conda environment with Python 3.10 and CUDA 12.8:
conda create -n vllm python=3.10
conda activate vllm
Next, install our vLLM wheel package:
pip install https://media.githubusercontent.com/media/zheyishine/vllm_whl/refs/heads/main/vllm-0.8.5.post2.dev28%2Bgd327eed71.cu128-cp310-cp310-linux_x86_64.whl --force-reinstall
Finally, install compatible versions of transformers after vLLM is installed:
pip install transformers==4.51.1
Offline Inference
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ring-flash-linear-2.0-GPTQ-int4")
sampling_params = SamplingParams(temperature=0.6, top_p=1.0, max_tokens=16384)
# use `max_num_seqs=1` without concurrency
llm = LLM(model="inclusionAI/Ring-flash-linear-2.0-GPTQ-int4", dtype='auto', enable_prefix_caching=False, max_num_seqs=128)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params)
for output in outputs:
print(output.outputs[0].text)
Online Inference
vllm serve inclusionAI/Ring-flash-linear-2.0-GPTQ-int4 \
--tensor-parallel-size 2 \
--pipeline-parallel-size 1 \
--gpu-memory-utilization 0.90 \
--max-num-seqs 128 \
--no-enable-prefix-caching
--api-key your-api-key
Evaluation
We evaluate the INT4 and FP8 quantized models using several datasets. The FP8 quantization is applied via the quantization="fp8" argument in SGLang or vLLM.
Ring-mini-linear-2.0
Dataset | BF16 | FP8 | GPTQ-Int4 |
---|---|---|---|
AIME25 | 73.65 | 72.40 | 66.56 |
AIME24 | 79.95 | 79.53 | 74.95 |
LiveCodeBench | 59.53 | 58.42 | 56.29 |
GPQA | 65.69 | 66.79 | 62.53 |
Ring-flash-linear-2.0
Dataset | BF16 | FP8 | GPTQ-Int4 |
---|---|---|---|
AIME25 | 85.10 | 84.22 | 82.88 |
LiveCodeBench | 69.82 | 69.44 | 66.14 |
GPQA | 72.85 | 72.95 | 71.72 |
License
This code repository is licensed under the MIT License.
Citation
If you find our work helpful, feel free to give us a cite.
- Downloads last month
- 94
Model tree for inclusionAI/Ring-flash-linear-2.0-GPTQ-int4
Base model
inclusionAI/Ling-mini-base-2.0-20T