Quantized Ring-Linear-2.0

Introduction

To enable deployment of Ring-Linear-2.0 on memory-constrained devices, we release quantized weights using the GPTQ INT4 format. Additionally, we evaluate the online FP8 quantization performance of Ring-Linear-2.0 models, which closely approaches that of BF16 precision.

Model Downloads

Model Maximum Supported Length Download
Ring-flash-linear-2.0-GPTQ-int4 128k 🤗 HuggingFace
🤖 ModelScope
Ring-mini-linear-2.0-GPTQ-int4 512k 🤗 HuggingFace
🤖 ModelScope

Quickstart

🚀 vLLM

Environment Preparation

Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below.

First, create a Conda environment with Python 3.10 and CUDA 12.8:

conda create -n vllm python=3.10
conda activate vllm

Next, install our vLLM wheel package:

pip install https://media.githubusercontent.com/media/zheyishine/vllm_whl/refs/heads/main/vllm-0.8.5.post2.dev28%2Bgd327eed71.cu128-cp310-cp310-linux_x86_64.whl --force-reinstall

Finally, install compatible versions of transformers after vLLM is installed:

pip install transformers==4.51.1 

Offline Inference

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

if __name__ == '__main__':
    tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ring-flash-linear-2.0-GPTQ-int4")
    
    sampling_params = SamplingParams(temperature=0.6, top_p=1.0, max_tokens=16384)

    # use `max_num_seqs=1` without concurrency
    llm = LLM(model="inclusionAI/Ring-flash-linear-2.0-GPTQ-int4", dtype='auto', enable_prefix_caching=False, max_num_seqs=128)
    
    
    prompt = "Give me a short introduction to large language models."
    messages = [
        {"role": "user", "content": prompt}
    ]
    
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    outputs = llm.generate([text], sampling_params)
    for output in outputs:
        print(output.outputs[0].text)

Online Inference

vllm serve inclusionAI/Ring-flash-linear-2.0-GPTQ-int4 \
              --tensor-parallel-size 2 \
              --pipeline-parallel-size 1 \
              --gpu-memory-utilization 0.90 \
              --max-num-seqs 128 \
              --no-enable-prefix-caching
              --api-key your-api-key

Evaluation

We evaluate the INT4 and FP8 quantized models using several datasets. The FP8 quantization is applied via the quantization="fp8" argument in SGLang or vLLM.

Ring-mini-linear-2.0

Dataset BF16 FP8 GPTQ-Int4
AIME25 73.65 72.40 66.56
AIME24 79.95 79.53 74.95
LiveCodeBench 59.53 58.42 56.29
GPQA 65.69 66.79 62.53

Ring-flash-linear-2.0

Dataset BF16 FP8 GPTQ-Int4
AIME25 85.10 84.22 82.88
LiveCodeBench 69.82 69.44 66.14
GPQA 72.85 72.95 71.72

License

This code repository is licensed under the MIT License.

Citation

If you find our work helpful, feel free to give us a cite.

Downloads last month
94
Safetensors
Model size
15.4B params
Tensor type
I64
·
I32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for inclusionAI/Ring-flash-linear-2.0-GPTQ-int4

Quantized
(3)
this model

Collection including inclusionAI/Ring-flash-linear-2.0-GPTQ-int4