Cantonese Llama 2 7b v1
Model Introduction
This model has been fine-tuned on cantonese-llama-2-7b, which is a second pretrained model based on Meta's llama2 The fine-tuning process utilized a dataset consisting of OpenAssistant/oasst1(with all Simplified Chinese removed),indiejoseph/ted-transcriptions-cantonese, indiejoseph/wikipedia-zh-yue-qa, indiejoseph/wikipedia-zh-yue-summaries, indiejoseph/ted-translation-zhhk-zhcn. This fine tuned model is intended to evaluate the imapct of Simplified Chinese in the llama2 pretrained model.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("indiejoseph/cantonese-llama-2-7b-oasst-v1", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("indiejoseph/cantonese-llama-2-7b-oasst-v1")
template = """A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {}
Assistant:
"""
tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"
def inference(input_texts):
inputs = tokenizer([template.format(text) for text in input_texts], return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=512)
outputs = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
outputs = [out.split('Assistant:')[1].strip() for out in outputs]
return outputs
print(inference("香港現任特首係邊個?"))
# Output: 香港現任特首係李家超。
print(inference("2019年香港發生咗咩事?"))
# Output: 2019年香港發生咗反修例運動。
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.