Improve model card: pipeline tag, library name, and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
5 |
-
license: cc-by-nc-4.0
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
pipeline_tag: other
|
9 |
---
|
10 |
|
11 |
<div align="center">
|
@@ -25,7 +26,7 @@ pipeline_tag: other
|
|
25 |
|
26 |
## Overview
|
27 |
|
28 |
-
UFM(UniFlowMatch) is a simple, end-to-end trained transformer model that directly regresses pixel displacement image that applies concurrently to both optical flow and wide-baseline matching tasks.
|
29 |
|
30 |
This model space contains the refine model.
|
31 |
|
@@ -33,6 +34,45 @@ This model space contains the refine model.
|
|
33 |
|
34 |
Check out our [Github Repo](https://github.com/UniFlowMatch/UFM) and the hugging face [demo](https://huggingface.co/spaces/infinity1096/UFM).
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Citation
|
38 |
If you find our repository useful, please consider giving it a star ⭐ and citing our paper in your work:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: cc-by-nc-4.0
|
5 |
+
pipeline_tag: image-to-image
|
6 |
+
library_name: pytorch
|
7 |
tags:
|
8 |
- model_hub_mixin
|
9 |
- pytorch_model_hub_mixin
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<div align="center">
|
|
|
26 |
|
27 |
## Overview
|
28 |
|
29 |
+
UFM(UniFlowMatch) is a simple, end-to-end trained transformer model that directly regresses pixel displacement image that applies concurrently to both optical flow and wide-baseline matching tasks.
|
30 |
|
31 |
This model space contains the refine model.
|
32 |
|
|
|
34 |
|
35 |
Check out our [Github Repo](https://github.com/UniFlowMatch/UFM) and the hugging face [demo](https://huggingface.co/spaces/infinity1096/UFM).
|
36 |
|
37 |
+
### Python API
|
38 |
+
|
39 |
+
```python
|
40 |
+
import cv2
|
41 |
+
import torch
|
42 |
+
|
43 |
+
# Load the base model (for general use)
|
44 |
+
from uniflowmatch.models.ufm import UniFlowMatchConfidence
|
45 |
+
model = UniFlowMatchConfidence.from_pretrained("infinity1096/UFM-Base")
|
46 |
+
|
47 |
+
# Or load the refinement model (for higher accuracy)
|
48 |
+
from uniflowmatch.models.ufm import UniFlowMatchClassificationRefinement
|
49 |
+
model = UniFlowMatchClassificationRefinement.from_pretrained("infinity1096/UFM-Refine")
|
50 |
+
|
51 |
+
# Set the model to evaluation mode
|
52 |
+
model.eval()
|
53 |
+
|
54 |
+
# Load images using cv2 or PIL
|
55 |
+
source_image = cv2.imread("path/to/source.jpg")
|
56 |
+
target_image = cv2.imread("path/to/target.jpg")
|
57 |
+
source_rgb = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB) # Convert to RGB
|
58 |
+
target_rgb = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB) # Convert to RGB
|
59 |
+
|
60 |
+
# Convert to torch tensors (uint8 or float32)
|
61 |
+
# Forward call takes care of normalizing uint8 images appropriate to the UFM model
|
62 |
+
source_image = torch.from_numpy(source_rgb) # Shape: (H, W, 3)
|
63 |
+
target_image = torch.from_numpy(target_rgb) # Shape: (H, W, 3)
|
64 |
+
|
65 |
+
# Predict correspondences
|
66 |
+
with torch.no_grad():
|
67 |
+
result = model.predict_correspondences_batched(
|
68 |
+
source_image=source_image,
|
69 |
+
target_image=target_image,
|
70 |
+
)
|
71 |
+
|
72 |
+
flow = result.flow.flow_output[0].cpu().numpy()
|
73 |
+
covisibility = result.covisibility.mask[0].cpu().numpy()
|
74 |
+
```
|
75 |
+
|
76 |
|
77 |
## Citation
|
78 |
If you find our repository useful, please consider giving it a star ⭐ and citing our paper in your work:
|