t5-base-qasper / README.md
irenepap's picture
update model card README.md
37b5baf
|
raw
history blame
2.39 kB
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-base-qasper
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-qasper
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1947
- Answer f1: 0.0483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer f1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| No log | 1.0 | 262 | 1.4772 | 0.0433 |
| 1.5405 | 2.0 | 524 | 1.2919 | 0.0492 |
| 1.5405 | 3.0 | 786 | 1.2517 | 0.0491 |
| 1.1476 | 4.0 | 1048 | 1.2292 | 0.0492 |
| 1.1476 | 5.0 | 1310 | 1.2197 | 0.0497 |
| 1.056 | 6.0 | 1572 | 1.2150 | 0.0509 |
| 1.056 | 7.0 | 1834 | 1.2116 | 0.0507 |
| 0.9915 | 8.0 | 2096 | 1.2048 | 0.0503 |
| 0.9915 | 9.0 | 2358 | 1.2056 | 0.0512 |
| 0.9418 | 10.0 | 2620 | 1.1954 | 0.0497 |
| 0.9418 | 11.0 | 2882 | 1.1977 | 0.0491 |
| 0.9348 | 12.0 | 3144 | 1.1954 | 0.0486 |
| 0.9348 | 13.0 | 3406 | 1.1926 | 0.0482 |
| 0.9073 | 14.0 | 3668 | 1.1946 | 0.0486 |
| 0.9073 | 15.0 | 3930 | 1.1919 | 0.0480 |
| 0.8769 | 16.0 | 4192 | 1.1955 | 0.0485 |
| 0.8769 | 17.0 | 4454 | 1.1941 | 0.0481 |
| 0.8754 | 18.0 | 4716 | 1.1947 | 0.0483 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2