测试用colab笔记,test notebook
不需要自己装环境即可使用!!No environment needed, use colab to test
https://colab.research.google.com/drive/1PA30HPgRooCTV-H9Wr_DZXHqC42PrgTO?usp=sharing
现在翻译能力就是人工吗喽,不是词汇不够,是学不会了
this model has problem learning more due to the 300M size and my poor techniques
模型公开声明
- 这个模型由 mt5-translation-ja_zh 启发(其实就是在它上面改的),使用mt5-small,整体较小
- 使用了CCMatrix-v1-Ja_Zh, 1e-4学习率, 7 个epoch, 大概1.7的 val loss,下不去了
Release Notes
- this model is finetuned from mt5-small, training methods and datasets refers to larryvrh/mt5-translation-ja_zh
- used a trimmed and fused dataset CCMatrix-v1-Ja_Zh 1e-4 for 7 epoch no weight decay,arraived at about 1.7 val loss, it somehow stalls there
A more precise example using it
使用指南
from transformers import pipeline
model_name="iryneko571/mt5-small-translation-ja_zh"
#pipe = pipeline("translation",model=model_name,tokenizer=model_name,repetition_penalty=1.4,batch_size=1,max_length=256)
pipe = pipeline("translation",
model=model_name,
repetition_penalty=1.4,
batch_size=1,
max_length=256
)
def translate_batch(batch, language='<-ja2zh->'): # batch is an array of string
i=0 # quickly format the list
while i<len(batch):
batch[i]=f'{language} {batch[i]}'
i+=1
translated=pipe(batch)
result=[]
i=0
while i<len(translated):
result.append(translated[i]['translation_text'])
i+=1
return result
inputs=[]
print(translate_batch(inputs))
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.