|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: distilbert-base-uncased |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-ner |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
args: conll2003 |
|
metrics: |
|
- type: precision |
|
value: 0.9227969559942649 |
|
name: Precision |
|
- type: recall |
|
value: 0.9360107394563151 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9293568810396535 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9833034139831922 |
|
name: Accuracy |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.973914094330502 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJmZTE4OGY4MmNlZGJmMzJmZGYxMjQ5Nzc4MzEzODU2YjQwZWQ1ZDU1N2NmN2M2YjliZTQ3MmZhZjA2OGYwNCIsInZlcnNpb24iOjF9.w_Y03WPSKDkQnyC3FFw4qtffWqg4ZbjJ6zyIEl6dKTCf6rgrjbhJKIb3MsOIw34Ydb-M3TTpV2Ak43bsaXQ-DA |
|
- type: precision |
|
value: 0.9791360147483736 |
|
name: Precision |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY2YjUwYTk5NGE1YWJlYjMyM2MyZGU4ZjE2MTM1ZGZiZDg4MTFjMGRkNzI5ODQ0ZTBlMmVkYzkyODIwYjgxMCIsInZlcnNpb24iOjF9.nChULEs9H0UFNtlM4m_kuBm9Ch981r7V4Axo1yvPIoPAPd6GyCopO615pyjd7bwXxYy4_nQpc1cBI5iY0OkHDA |
|
- type: recall |
|
value: 0.9793269742207723 |
|
name: Recall |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmI0MzRkZjY4M2Y5YWE1OTdjNDNlN2NmNDVhMmEwODI2MmM1ZTViNDc1NzllZDdkOWZiZWVkMjQxNGM0YTQyZCIsInZlcnNpb24iOjF9.jS1iBDeJK7_QB7kanNxyfAnZm0HdS_EqBPjBCVhYCPEMRLnuXeuztdz_G4MczcZV6F2RoDjLJzxJdbuzKN1eCw |
|
- type: f1 |
|
value: 0.9792314851748437 |
|
name: F1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQ1MjM1ZDU2YzlmY2JkYTU0MjU5MTIzNDc3MDZmNzJjZmNkNzI1ZDY0MWFmYjBhZjI5NTg3ZjY0NGFlYWZmOSIsInZlcnNpb24iOjF9.BtgL5tCizs8iH7LHOfl1aRfaW0Nxfx6kWldUmWbjDk_McZrK6BRxFnHDscVZ1wUa11rX1IjgC1_DOcMNBXq6BQ |
|
- type: loss |
|
value: 0.10710480064153671 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU0MDY3OTAxZTUyNmNlMjA1MDdiNTg4ZmI4MTJmMDYyMTY4MjZjYzNkODFlMDY1M2RjMjMyNDkzNzBkMmQzNiIsInZlcnNpb24iOjF9.dU5jfYPYWXkiebzZ_c4HTxui6RoYYfAdShcSzXBY0v-pB9FEwm_-8vHOtT-rK_s_EwifpPobRfdpXL2Y7C33CA |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-ner |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0614 |
|
- Precision: 0.9228 |
|
- Recall: 0.9360 |
|
- F1: 0.9294 |
|
- Accuracy: 0.9833 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2433 | 1.0 | 878 | 0.0732 | 0.9079 | 0.9190 | 0.9134 | 0.9795 | |
|
| 0.0553 | 2.0 | 1756 | 0.0599 | 0.9170 | 0.9333 | 0.9251 | 0.9826 | |
|
| 0.0305 | 3.0 | 2634 | 0.0614 | 0.9228 | 0.9360 | 0.9294 | 0.9833 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|