Uploaded model

  • Developed by: itirei
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

動かし方

インストール

pip install -U bitsandbytes transformers accelerate datasets peft

使用方法

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

HF_TOKEN = "有効なHuggingFaceトークン"
from google.colab import userdata
HF_TOKEN = userdata.get('HF_API_KEY')

base_model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "itirei/llm-jp-3-13b-1124"

### QLoRA設定
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

### モデルの読み込み
model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token=HF_TOKEN
)
### トークナイザーの読み込み
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, token=HF_TOKEN)

# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

### 生成用の関数を定義
def generate_response(input):
  prompt = f"""### 指示
  {input}
  \#\#\# 回答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
  return output

### 使用例
input = "### 指示\nあなたの指示をここに入力してください\n### 回答\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=100, do_sample=False, repetition_penalty=1.2)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for itirei/llm-jp-3-13b-1124

Finetuned
(1122)
this model