See axolotl config
axolotl version: 0.11.0.dev0
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6353e03f79902862_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: ivangrapher/7e93e25f-f904-47bb-b069-93932f70353e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-5
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: false
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/6353e03f79902862_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: torch.bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4c9818ea-7746-48d6-b930-c0ec5a9e7ee4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4c9818ea-7746-48d6-b930-c0ec5a9e7ee4
warmup_steps: 10
weight_decay: 0.0
xformers: false
xformers_attention: false
7e93e25f-f904-47bb-b069-93932f70353e
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 2.2245 |
2.3491 | 0.0003 | 25 | 2.1816 |
4.5227 | 0.0005 | 50 | 2.0349 |
2.1391 | 0.0008 | 75 | 1.9554 |
3.3163 | 0.0010 | 100 | 1.9451 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ivangrapher/7e93e25f-f904-47bb-b069-93932f70353e
Base model
TinyLlama/TinyLlama_v1.1