See axolotl config
axolotl version: 0.11.0.dev0
adapter: lora
base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- chat_template: chatml
data_files:
- 2eef1294a146aa33_train_data.json
ds_type: json
field_messages: conversations
message_field_content: value
message_field_role: from
message_property_mappings:
content: value
role: from
path: /workspace/input_data/
roles:
assistant:
- gpt
user:
- human
type: chat_template
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: ivangrapher/e6fe19d9-add8-4276-8aa7-b595b016f672
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/2eef1294a146aa33_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: da29bf38-8823-407b-9682-2f825f0fdee1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: da29bf38-8823-407b-9682-2f825f0fdee1
warmup_steps: 10
weight_decay: 0.0
xformers: true
xformers_attention: null
e6fe19d9-add8-4276-8aa7-b595b016f672
This model is a fine-tuned version of OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.9902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 3.3328 |
3.4784 | 0.0002 | 3 | 3.3231 |
3.03 | 0.0003 | 6 | 3.2163 |
2.9704 | 0.0005 | 9 | 2.9902 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support