jab11769's picture
cpall-economic-news-classifier-Wangchanberta
5c8240e verified
metadata
library_name: transformers
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: CPALL-Stock-Trend-Prediction-Wangchanberta-APR
    results: []

CPALL-Stock-Trend-Prediction-Wangchanberta-APR

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1002
  • Accuracy: 0.3341
  • Precision: 0.3328
  • Recall: 0.3341
  • F1: 0.3270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1226 1.0 973 1.1571 0.3377 0.3194 0.3377 0.1889
1.1146 2.0 1946 1.1015 0.3354 0.1125 0.3354 0.1685
1.1106 3.0 2919 1.1036 0.3385 0.2776 0.3385 0.1715
1.1083 4.0 3892 1.1033 0.3264 0.1065 0.3264 0.1606
1.1083 5.0 4865 1.1013 0.3380 0.1143 0.3380 0.1709
1.1039 6.0 5838 1.1065 0.3354 0.1125 0.3354 0.1685
1.1032 7.0 6811 1.1011 0.3349 0.2014 0.3349 0.1697
1.106 8.0 7784 1.1056 0.3356 0.3617 0.3356 0.1714
1.1059 9.0 8757 1.1025 0.3259 0.3248 0.3259 0.3085
1.1029 10.0 9730 1.1002 0.3341 0.3328 0.3341 0.3270

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1