CPALL-Stock-Trend-Prediction-category-sentiment-filter-1stphase-Wangchanberta-APR
This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6450
- Accuracy: 0.8845
- Precision: 0.8994
- Recall: 0.8845
- F1: 0.8866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 186 | 0.7261 | 0.6977 | 0.7593 | 0.6977 | 0.7077 |
No log | 2.0 | 372 | 0.6173 | 0.7721 | 0.8199 | 0.7721 | 0.7780 |
0.5566 | 3.0 | 558 | 0.5419 | 0.8240 | 0.8571 | 0.8240 | 0.8281 |
0.5566 | 4.0 | 744 | 0.5319 | 0.8705 | 0.8863 | 0.8705 | 0.8732 |
0.5566 | 5.0 | 930 | 0.5329 | 0.8791 | 0.8928 | 0.8791 | 0.8810 |
0.1437 | 6.0 | 1116 | 0.7738 | 0.8504 | 0.8823 | 0.8504 | 0.8547 |
0.1437 | 7.0 | 1302 | 0.5082 | 0.8984 | 0.9070 | 0.8984 | 0.9001 |
0.1437 | 8.0 | 1488 | 0.5811 | 0.8907 | 0.9026 | 0.8907 | 0.8925 |
0.0558 | 9.0 | 1674 | 0.6450 | 0.8845 | 0.8994 | 0.8845 | 0.8866 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support