scb-finetune-bert
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3597
- Accuracy: 0.3558
- Precision: 0.2910
- Recall: 0.3558
- F1: 0.3201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 15 | 1.0511 | 0.375 | 0.1406 | 0.375 | 0.2045 |
No log | 2.0 | 30 | 1.0649 | 0.375 | 0.1406 | 0.375 | 0.2045 |
No log | 3.0 | 45 | 1.0597 | 0.3558 | 0.2953 | 0.3558 | 0.2957 |
No log | 4.0 | 60 | 1.0902 | 0.3269 | 0.2611 | 0.3269 | 0.2650 |
No log | 5.0 | 75 | 1.0790 | 0.4135 | 0.3320 | 0.4135 | 0.3657 |
No log | 6.0 | 90 | 1.1469 | 0.3846 | 0.3139 | 0.3846 | 0.3457 |
No log | 7.0 | 105 | 1.2955 | 0.3462 | 0.2866 | 0.3462 | 0.3015 |
No log | 8.0 | 120 | 1.3283 | 0.3269 | 0.2717 | 0.3269 | 0.2933 |
No log | 9.0 | 135 | 1.3397 | 0.375 | 0.3036 | 0.375 | 0.3351 |
No log | 10.0 | 150 | 1.3597 | 0.3558 | 0.2910 | 0.3558 | 0.3201 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jab11769/scb-finetune-bert
Base model
google-bert/bert-base-multilingual-cased