AppReviews AI BERT Fine-tuned Model
Collection
2 items
•
Updated
這個模型是基於 bert-base-chinese
微調的文本分類模型,可以將文本分類為以下六個類別:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 載入模型和分詞器
tokenizer = AutoTokenizer.from_pretrained("jackietung/bert-base-chinese-multi-classification")
model = AutoModelForSequenceClassification.from_pretrained("jackietung/bert-base-chinese-multi-classification")
# 準備輸入
text = "商品搜尋體驗很好"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
# 進行預測
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1).item()
# 類別映射
label_map = {
0: '會員登入',
1: '搜尋功能',
2: '商品相關',
3: '結帳付款',
4: '客戶服務',
5: '其他'
}
print(f"預測類別: {label_map[predicted_class]}")
print(f"預測機率: {predictions[0][predicted_class].item():.4f}")
Base model
google-bert/bert-base-chinese